Metamath Proof Explorer


Theorem ssunsn2

Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp . (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ssunsn2 B A A C D B A A C B D A A C D

Proof

Step Hyp Ref Expression
1 snssi D A D A
2 unss B A D A B D A
3 2 bicomi B D A B A D A
4 3 rbaibr D A B A B D A
5 1 4 syl D A B A B D A
6 5 anbi1d D A B A A C D B D A A C D
7 2 biimpi B A D A B D A
8 7 expcom D A B A B D A
9 1 8 syl D A B A B D A
10 ssun3 A C A C D
11 10 a1i D A A C A C D
12 9 11 anim12d D A B A A C B D A A C D
13 pm4.72 B A A C B D A A C D B D A A C D B A A C B D A A C D
14 12 13 sylib D A B D A A C D B A A C B D A A C D
15 6 14 bitrd D A B A A C D B A A C B D A A C D
16 uncom D C = C D
17 16 sseq2i A D C A C D
18 ssundif A D C A D C
19 17 18 bitr3i A C D A D C
20 disjsn A D = ¬ D A
21 disj3 A D = A = A D
22 20 21 bitr3i ¬ D A A = A D
23 sseq1 A = A D A C A D C
24 22 23 sylbi ¬ D A A C A D C
25 19 24 bitr4id ¬ D A A C D A C
26 25 anbi2d ¬ D A B A A C D B A A C
27 3 simplbi B D A B A
28 27 a1i ¬ D A B D A B A
29 25 biimpd ¬ D A A C D A C
30 28 29 anim12d ¬ D A B D A A C D B A A C
31 pm4.72 B D A A C D B A A C B A A C B D A A C D B A A C
32 30 31 sylib ¬ D A B A A C B D A A C D B A A C
33 orcom B D A A C D B A A C B A A C B D A A C D
34 32 33 bitrdi ¬ D A B A A C B A A C B D A A C D
35 26 34 bitrd ¬ D A B A A C D B A A C B D A A C D
36 15 35 pm2.61i B A A C D B A A C B D A A C D