Metamath Proof Explorer


Theorem ssuzfz

Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ssuzfz.1 Z = M
ssuzfz.2 φ A Z
ssuzfz.3 φ A Fin
Assertion ssuzfz φ A M sup A <

Proof

Step Hyp Ref Expression
1 ssuzfz.1 Z = M
2 ssuzfz.2 φ A Z
3 ssuzfz.3 φ A Fin
4 2 sselda φ k A k Z
5 4 1 eleqtrdi φ k A k M
6 eluzel2 k M M
7 5 6 syl φ k A M
8 uzssz M
9 1 8 eqsstri Z
10 9 a1i φ Z
11 2 10 sstrd φ A
12 11 adantr φ k A A
13 ne0i k A A
14 13 adantl φ k A A
15 3 adantr φ k A A Fin
16 suprfinzcl A A A Fin sup A < A
17 12 14 15 16 syl3anc φ k A sup A < A
18 12 17 sseldd φ k A sup A <
19 11 sselda φ k A k
20 eluzle k M M k
21 5 20 syl φ k A M k
22 zssre
23 22 a1i φ
24 11 23 sstrd φ A
25 24 adantr φ k A A
26 simpr φ k A k A
27 eqidd φ k A sup A < = sup A <
28 25 15 26 27 supfirege φ k A k sup A <
29 7 18 19 21 28 elfzd φ k A k M sup A <
30 29 ex φ k A k M sup A <
31 30 ralrimiv φ k A k M sup A <
32 dfss3 A M sup A < k A k M sup A <
33 31 32 sylibr φ A M sup A <