Metamath Proof Explorer


Theorem sswf

Description: A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion sswf A R1 On B A B R1 On

Proof

Step Hyp Ref Expression
1 rankidb A R1 On A R1 suc rank A
2 r1sscl A R1 suc rank A B A B R1 suc rank A
3 1 2 sylan A R1 On B A B R1 suc rank A
4 r1elwf B R1 suc rank A B R1 On
5 3 4 syl A R1 On B A B R1 On