Metamath Proof Explorer


Theorem sswrd

Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion sswrd S T Word S Word T

Proof

Step Hyp Ref Expression
1 fss w : 0 ..^ w S S T w : 0 ..^ w T
2 1 expcom S T w : 0 ..^ w S w : 0 ..^ w T
3 iswrdb w Word S w : 0 ..^ w S
4 iswrdb w Word T w : 0 ..^ w T
5 2 3 4 3imtr4g S T w Word S w Word T
6 5 ssrdv S T Word S Word T