Metamath Proof Explorer


Theorem ssxr

Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ssxr A * A +∞ A −∞ A

Proof

Step Hyp Ref Expression
1 df-pr +∞ −∞ = +∞ −∞
2 1 ineq2i A +∞ −∞ = A +∞ −∞
3 indi A +∞ −∞ = A +∞ A −∞
4 2 3 eqtri A +∞ −∞ = A +∞ A −∞
5 disjsn A +∞ = ¬ +∞ A
6 disjsn A −∞ = ¬ −∞ A
7 5 6 anbi12i A +∞ = A −∞ = ¬ +∞ A ¬ −∞ A
8 7 biimpri ¬ +∞ A ¬ −∞ A A +∞ = A −∞ =
9 pm4.56 ¬ +∞ A ¬ −∞ A ¬ +∞ A −∞ A
10 un00 A +∞ = A −∞ = A +∞ A −∞ =
11 8 9 10 3imtr3i ¬ +∞ A −∞ A A +∞ A −∞ =
12 4 11 eqtrid ¬ +∞ A −∞ A A +∞ −∞ =
13 reldisj A +∞ −∞ A +∞ −∞ = A +∞ −∞ +∞ −∞
14 renfdisj +∞ −∞ =
15 disj3 +∞ −∞ = = +∞ −∞
16 14 15 mpbi = +∞ −∞
17 difun2 +∞ −∞ +∞ −∞ = +∞ −∞
18 16 17 eqtr4i = +∞ −∞ +∞ −∞
19 18 sseq2i A A +∞ −∞ +∞ −∞
20 13 19 bitr4di A +∞ −∞ A +∞ −∞ = A
21 12 20 syl5ib A +∞ −∞ ¬ +∞ A −∞ A A
22 21 orrd A +∞ −∞ +∞ A −∞ A A
23 df-xr * = +∞ −∞
24 23 sseq2i A * A +∞ −∞
25 3orrot A +∞ A −∞ A +∞ A −∞ A A
26 df-3or +∞ A −∞ A A +∞ A −∞ A A
27 25 26 bitri A +∞ A −∞ A +∞ A −∞ A A
28 22 24 27 3imtr4i A * A +∞ A −∞ A