Metamath Proof Explorer


Theorem sszcld

Description: Every subset of the integers are closed in the topology on CC . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypothesis recld2.1 J = TopOpen fld
Assertion sszcld A A Clsd J

Proof

Step Hyp Ref Expression
1 recld2.1 J = TopOpen fld
2 1 zcld2 Clsd J
3 id A A
4 zex V
5 difss A
6 4 5 elpwi2 A 𝒫
7 1 zdis J 𝑡 = 𝒫
8 6 7 eleqtrri A J 𝑡
9 1 cnfldtopon J TopOn
10 zsscn
11 resttopon J TopOn J 𝑡 TopOn
12 9 10 11 mp2an J 𝑡 TopOn
13 12 topontopi J 𝑡 Top
14 12 toponunii = J 𝑡
15 14 iscld J 𝑡 Top A Clsd J 𝑡 A A J 𝑡
16 13 15 ax-mp A Clsd J 𝑡 A A J 𝑡
17 3 8 16 sylanblrc A A Clsd J 𝑡
18 restcldr Clsd J A Clsd J 𝑡 A Clsd J
19 2 17 18 sylancr A A Clsd J