Metamath Proof Explorer


Theorem stadd3i

Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 A C
stle.2 B C
stm1add3.3 C C
Assertion stadd3i S States S A + S B + S C = 3 S A = 1

Proof

Step Hyp Ref Expression
1 stle.1 A C
2 stle.2 B C
3 stm1add3.3 C C
4 stcl S States A C S A
5 1 4 mpi S States S A
6 5 recnd S States S A
7 stcl S States B C S B
8 2 7 mpi S States S B
9 8 recnd S States S B
10 stcl S States C C S C
11 3 10 mpi S States S C
12 11 recnd S States S C
13 6 9 12 addassd S States S A + S B + S C = S A + S B + S C
14 13 eqeq1d S States S A + S B + S C = 3 S A + S B + S C = 3
15 eqcom S A + S B + S C = 3 3 = S A + S B + S C
16 8 11 readdcld S States S B + S C
17 5 16 readdcld S States S A + S B + S C
18 ltne S A + S B + S C S A + S B + S C < 3 3 S A + S B + S C
19 18 ex S A + S B + S C S A + S B + S C < 3 3 S A + S B + S C
20 17 19 syl S States S A + S B + S C < 3 3 S A + S B + S C
21 20 necon2bd S States 3 = S A + S B + S C ¬ S A + S B + S C < 3
22 15 21 syl5bi S States S A + S B + S C = 3 ¬ S A + S B + S C < 3
23 1re 1
24 23 23 readdcli 1 + 1
25 24 a1i S States 1 + 1
26 1red S States 1
27 stle1 S States B C S B 1
28 2 27 mpi S States S B 1
29 stle1 S States C C S C 1
30 3 29 mpi S States S C 1
31 8 11 26 26 28 30 le2addd S States S B + S C 1 + 1
32 16 25 5 31 leadd2dd S States S A + S B + S C S A + 1 + 1
33 32 adantr S States S A < 1 S A + S B + S C S A + 1 + 1
34 ltadd1 S A 1 1 + 1 S A < 1 S A + 1 + 1 < 1 + 1 + 1
35 34 biimpd S A 1 1 + 1 S A < 1 S A + 1 + 1 < 1 + 1 + 1
36 5 26 25 35 syl3anc S States S A < 1 S A + 1 + 1 < 1 + 1 + 1
37 36 imp S States S A < 1 S A + 1 + 1 < 1 + 1 + 1
38 readdcl S A 1 + 1 S A + 1 + 1
39 5 24 38 sylancl S States S A + 1 + 1
40 23 24 readdcli 1 + 1 + 1
41 40 a1i S States 1 + 1 + 1
42 lelttr S A + S B + S C S A + 1 + 1 1 + 1 + 1 S A + S B + S C S A + 1 + 1 S A + 1 + 1 < 1 + 1 + 1 S A + S B + S C < 1 + 1 + 1
43 17 39 41 42 syl3anc S States S A + S B + S C S A + 1 + 1 S A + 1 + 1 < 1 + 1 + 1 S A + S B + S C < 1 + 1 + 1
44 43 adantr S States S A < 1 S A + S B + S C S A + 1 + 1 S A + 1 + 1 < 1 + 1 + 1 S A + S B + S C < 1 + 1 + 1
45 33 37 44 mp2and S States S A < 1 S A + S B + S C < 1 + 1 + 1
46 df-3 3 = 2 + 1
47 df-2 2 = 1 + 1
48 47 oveq1i 2 + 1 = 1 + 1 + 1
49 ax-1cn 1
50 49 49 49 addassi 1 + 1 + 1 = 1 + 1 + 1
51 46 48 50 3eqtrri 1 + 1 + 1 = 3
52 45 51 breqtrdi S States S A < 1 S A + S B + S C < 3
53 52 ex S States S A < 1 S A + S B + S C < 3
54 53 con3d S States ¬ S A + S B + S C < 3 ¬ S A < 1
55 stle1 S States A C S A 1
56 1 55 mpi S States S A 1
57 leloe S A 1 S A 1 S A < 1 S A = 1
58 5 23 57 sylancl S States S A 1 S A < 1 S A = 1
59 56 58 mpbid S States S A < 1 S A = 1
60 59 ord S States ¬ S A < 1 S A = 1
61 22 54 60 3syld S States S A + S B + S C = 3 S A = 1
62 14 61 sylbid S States S A + S B + S C = 3 S A = 1