Metamath Proof Explorer


Theorem stdbdbl

Description: The standard bounded metric corresponding to C generates the same balls as C for radii less than R . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis stdbdmet.1 D = x X , y X if x C y R x C y R
Assertion stdbdbl C ∞Met X R * 0 < R P X S * S R P ball D S = P ball C S

Proof

Step Hyp Ref Expression
1 stdbdmet.1 D = x X , y X if x C y R x C y R
2 simpll2 C ∞Met X R * 0 < R P X S * S R z X R *
3 simpr1 C ∞Met X R * 0 < R P X S * S R P X
4 3 adantr C ∞Met X R * 0 < R P X S * S R z X P X
5 simpr C ∞Met X R * 0 < R P X S * S R z X z X
6 1 stdbdmetval R * P X z X P D z = if P C z R P C z R
7 2 4 5 6 syl3anc C ∞Met X R * 0 < R P X S * S R z X P D z = if P C z R P C z R
8 7 breq1d C ∞Met X R * 0 < R P X S * S R z X P D z < S if P C z R P C z R < S
9 simplr3 C ∞Met X R * 0 < R P X S * S R z X S R
10 9 biantrud C ∞Met X R * 0 < R P X S * S R z X S P C z S P C z S R
11 simpr2 C ∞Met X R * 0 < R P X S * S R S *
12 11 adantr C ∞Met X R * 0 < R P X S * S R z X S *
13 simpl1 C ∞Met X R * 0 < R P X S * S R C ∞Met X
14 13 adantr C ∞Met X R * 0 < R P X S * S R z X C ∞Met X
15 xmetcl C ∞Met X P X z X P C z *
16 14 4 5 15 syl3anc C ∞Met X R * 0 < R P X S * S R z X P C z *
17 xrlemin S * P C z * R * S if P C z R P C z R S P C z S R
18 12 16 2 17 syl3anc C ∞Met X R * 0 < R P X S * S R z X S if P C z R P C z R S P C z S R
19 10 18 bitr4d C ∞Met X R * 0 < R P X S * S R z X S P C z S if P C z R P C z R
20 19 notbid C ∞Met X R * 0 < R P X S * S R z X ¬ S P C z ¬ S if P C z R P C z R
21 xrltnle P C z * S * P C z < S ¬ S P C z
22 16 12 21 syl2anc C ∞Met X R * 0 < R P X S * S R z X P C z < S ¬ S P C z
23 16 2 ifcld C ∞Met X R * 0 < R P X S * S R z X if P C z R P C z R *
24 xrltnle if P C z R P C z R * S * if P C z R P C z R < S ¬ S if P C z R P C z R
25 23 12 24 syl2anc C ∞Met X R * 0 < R P X S * S R z X if P C z R P C z R < S ¬ S if P C z R P C z R
26 20 22 25 3bitr4d C ∞Met X R * 0 < R P X S * S R z X P C z < S if P C z R P C z R < S
27 8 26 bitr4d C ∞Met X R * 0 < R P X S * S R z X P D z < S P C z < S
28 27 rabbidva C ∞Met X R * 0 < R P X S * S R z X | P D z < S = z X | P C z < S
29 1 stdbdxmet C ∞Met X R * 0 < R D ∞Met X
30 29 adantr C ∞Met X R * 0 < R P X S * S R D ∞Met X
31 blval D ∞Met X P X S * P ball D S = z X | P D z < S
32 30 3 11 31 syl3anc C ∞Met X R * 0 < R P X S * S R P ball D S = z X | P D z < S
33 blval C ∞Met X P X S * P ball C S = z X | P C z < S
34 13 3 11 33 syl3anc C ∞Met X R * 0 < R P X S * S R P ball C S = z X | P C z < S
35 28 32 34 3eqtr4d C ∞Met X R * 0 < R P X S * S R P ball D S = P ball C S