Metamath Proof Explorer


Theorem stdbdmetval

Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis stdbdmet.1 D = x X , y X if x C y R x C y R
Assertion stdbdmetval R V A X B X A D B = if A C B R A C B R

Proof

Step Hyp Ref Expression
1 stdbdmet.1 D = x X , y X if x C y R x C y R
2 ovex A C B V
3 ifexg A C B V R V if A C B R A C B R V
4 2 3 mpan R V if A C B R A C B R V
5 oveq12 x = A y = B x C y = A C B
6 5 breq1d x = A y = B x C y R A C B R
7 6 5 ifbieq1d x = A y = B if x C y R x C y R = if A C B R A C B R
8 7 1 ovmpoga A X B X if A C B R A C B R V A D B = if A C B R A C B R
9 4 8 syl3an3 A X B X R V A D B = if A C B R A C B R
10 9 3comr R V A X B X A D B = if A C B R A C B R