Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
stdbdmetval
Next ⟩
stdbdxmet
Metamath Proof Explorer
Ascii
Unicode
Theorem
stdbdmetval
Description:
Value of the standard bounded metric.
(Contributed by
Mario Carneiro
, 26-Aug-2015)
Ref
Expression
Hypothesis
stdbdmet.1
⊢
D
=
x
∈
X
,
y
∈
X
⟼
if
x
C
y
≤
R
x
C
y
R
Assertion
stdbdmetval
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
A
D
B
=
if
A
C
B
≤
R
A
C
B
R
Proof
Step
Hyp
Ref
Expression
1
stdbdmet.1
⊢
D
=
x
∈
X
,
y
∈
X
⟼
if
x
C
y
≤
R
x
C
y
R
2
ovex
⊢
A
C
B
∈
V
3
ifexg
⊢
A
C
B
∈
V
∧
R
∈
V
→
if
A
C
B
≤
R
A
C
B
R
∈
V
4
2
3
mpan
⊢
R
∈
V
→
if
A
C
B
≤
R
A
C
B
R
∈
V
5
oveq12
⊢
x
=
A
∧
y
=
B
→
x
C
y
=
A
C
B
6
5
breq1d
⊢
x
=
A
∧
y
=
B
→
x
C
y
≤
R
↔
A
C
B
≤
R
7
6
5
ifbieq1d
⊢
x
=
A
∧
y
=
B
→
if
x
C
y
≤
R
x
C
y
R
=
if
A
C
B
≤
R
A
C
B
R
8
7
1
ovmpoga
⊢
A
∈
X
∧
B
∈
X
∧
if
A
C
B
≤
R
A
C
B
R
∈
V
→
A
D
B
=
if
A
C
B
≤
R
A
C
B
R
9
4
8
syl3an3
⊢
A
∈
X
∧
B
∈
X
∧
R
∈
V
→
A
D
B
=
if
A
C
B
≤
R
A
C
B
R
10
9
3comr
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
A
D
B
=
if
A
C
B
≤
R
A
C
B
R