Metamath Proof Explorer


Theorem stdbdmopn

Description: The standard bounded metric corresponding to C generates the same topology as C . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses stdbdmet.1 D = x X , y X if x C y R x C y R
stdbdmopn.2 J = MetOpen C
Assertion stdbdmopn C ∞Met X R * 0 < R J = MetOpen D

Proof

Step Hyp Ref Expression
1 stdbdmet.1 D = x X , y X if x C y R x C y R
2 stdbdmopn.2 J = MetOpen C
3 rpxr r + r *
4 3 ad2antll C ∞Met X R * 0 < R z X r + r *
5 simpl2 C ∞Met X R * 0 < R z X r + R *
6 4 5 ifcld C ∞Met X R * 0 < R z X r + if r R r R *
7 rpre r + r
8 7 ad2antll C ∞Met X R * 0 < R z X r + r
9 rpgt0 r + 0 < r
10 9 ad2antll C ∞Met X R * 0 < R z X r + 0 < r
11 simpl3 C ∞Met X R * 0 < R z X r + 0 < R
12 breq2 r = if r R r R 0 < r 0 < if r R r R
13 breq2 R = if r R r R 0 < R 0 < if r R r R
14 12 13 ifboth 0 < r 0 < R 0 < if r R r R
15 10 11 14 syl2anc C ∞Met X R * 0 < R z X r + 0 < if r R r R
16 0xr 0 *
17 xrltle 0 * if r R r R * 0 < if r R r R 0 if r R r R
18 16 6 17 sylancr C ∞Met X R * 0 < R z X r + 0 < if r R r R 0 if r R r R
19 15 18 mpd C ∞Met X R * 0 < R z X r + 0 if r R r R
20 xrmin1 r * R * if r R r R r
21 4 5 20 syl2anc C ∞Met X R * 0 < R z X r + if r R r R r
22 xrrege0 if r R r R * r 0 if r R r R if r R r R r if r R r R
23 6 8 19 21 22 syl22anc C ∞Met X R * 0 < R z X r + if r R r R
24 23 15 elrpd C ∞Met X R * 0 < R z X r + if r R r R +
25 simprl C ∞Met X R * 0 < R z X r + z X
26 xrmin2 r * R * if r R r R R
27 4 5 26 syl2anc C ∞Met X R * 0 < R z X r + if r R r R R
28 25 6 27 3jca C ∞Met X R * 0 < R z X r + z X if r R r R * if r R r R R
29 1 stdbdbl C ∞Met X R * 0 < R z X if r R r R * if r R r R R z ball D if r R r R = z ball C if r R r R
30 28 29 syldan C ∞Met X R * 0 < R z X r + z ball D if r R r R = z ball C if r R r R
31 30 eqcomd C ∞Met X R * 0 < R z X r + z ball C if r R r R = z ball D if r R r R
32 breq1 s = if r R r R s r if r R r R r
33 oveq2 s = if r R r R z ball C s = z ball C if r R r R
34 oveq2 s = if r R r R z ball D s = z ball D if r R r R
35 33 34 eqeq12d s = if r R r R z ball C s = z ball D s z ball C if r R r R = z ball D if r R r R
36 32 35 anbi12d s = if r R r R s r z ball C s = z ball D s if r R r R r z ball C if r R r R = z ball D if r R r R
37 36 rspcev if r R r R + if r R r R r z ball C if r R r R = z ball D if r R r R s + s r z ball C s = z ball D s
38 24 21 31 37 syl12anc C ∞Met X R * 0 < R z X r + s + s r z ball C s = z ball D s
39 38 ralrimivva C ∞Met X R * 0 < R z X r + s + s r z ball C s = z ball D s
40 simp1 C ∞Met X R * 0 < R C ∞Met X
41 1 stdbdxmet C ∞Met X R * 0 < R D ∞Met X
42 eqid MetOpen D = MetOpen D
43 2 42 metequiv2 C ∞Met X D ∞Met X z X r + s + s r z ball C s = z ball D s J = MetOpen D
44 40 41 43 syl2anc C ∞Met X R * 0 < R z X r + s + s r z ball C s = z ball D s J = MetOpen D
45 39 44 mpd C ∞Met X R * 0 < R J = MetOpen D