Metamath Proof Explorer


Theorem stgoldbwt

Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020)

Ref Expression
Assertion stgoldbwt n Odd 7 < n n GoldbachOdd n Odd 5 < n n GoldbachOddW

Proof

Step Hyp Ref Expression
1 pm3.35 7 < n 7 < n n GoldbachOdd n GoldbachOdd
2 gbogbow n GoldbachOdd n GoldbachOddW
3 2 a1d n GoldbachOdd 5 < n n GoldbachOddW
4 1 3 syl 7 < n 7 < n n GoldbachOdd 5 < n n GoldbachOddW
5 4 ex 7 < n 7 < n n GoldbachOdd 5 < n n GoldbachOddW
6 5 a1d 7 < n n Odd 7 < n n GoldbachOdd 5 < n n GoldbachOddW
7 oddz n Odd n
8 7 zred n Odd n
9 7re 7
10 9 a1i n Odd 7
11 8 10 lenltd n Odd n 7 ¬ 7 < n
12 8 10 leloed n Odd n 7 n < 7 n = 7
13 7 adantr n Odd 5 < n n
14 6nn 6
15 14 nnzi 6
16 13 15 jctir n Odd 5 < n n 6
17 16 adantl n < 7 n Odd 5 < n n 6
18 df-7 7 = 6 + 1
19 18 breq2i n < 7 n < 6 + 1
20 19 biimpi n < 7 n < 6 + 1
21 df-6 6 = 5 + 1
22 5nn 5
23 22 nnzi 5
24 zltp1le 5 n 5 < n 5 + 1 n
25 23 7 24 sylancr n Odd 5 < n 5 + 1 n
26 25 biimpa n Odd 5 < n 5 + 1 n
27 21 26 eqbrtrid n Odd 5 < n 6 n
28 20 27 anim12ci n < 7 n Odd 5 < n 6 n n < 6 + 1
29 zgeltp1eq n 6 6 n n < 6 + 1 n = 6
30 17 28 29 sylc n < 7 n Odd 5 < n n = 6
31 30 orcd n < 7 n Odd 5 < n n = 6 n = 7
32 31 ex n < 7 n Odd 5 < n n = 6 n = 7
33 olc n = 7 n = 6 n = 7
34 33 a1d n = 7 n Odd 5 < n n = 6 n = 7
35 32 34 jaoi n < 7 n = 7 n Odd 5 < n n = 6 n = 7
36 35 expd n < 7 n = 7 n Odd 5 < n n = 6 n = 7
37 36 com12 n Odd n < 7 n = 7 5 < n n = 6 n = 7
38 12 37 sylbid n Odd n 7 5 < n n = 6 n = 7
39 eleq1 n = 6 n Odd 6 Odd
40 6even 6 Even
41 evennodd 6 Even ¬ 6 Odd
42 41 pm2.21d 6 Even 6 Odd n GoldbachOddW
43 40 42 mp1i n = 6 6 Odd n GoldbachOddW
44 39 43 sylbid n = 6 n Odd n GoldbachOddW
45 7gbow 7 GoldbachOddW
46 eleq1 n = 7 n GoldbachOddW 7 GoldbachOddW
47 45 46 mpbiri n = 7 n GoldbachOddW
48 47 a1d n = 7 n Odd n GoldbachOddW
49 44 48 jaoi n = 6 n = 7 n Odd n GoldbachOddW
50 49 com12 n Odd n = 6 n = 7 n GoldbachOddW
51 38 50 syl6d n Odd n 7 5 < n n GoldbachOddW
52 11 51 sylbird n Odd ¬ 7 < n 5 < n n GoldbachOddW
53 52 com12 ¬ 7 < n n Odd 5 < n n GoldbachOddW
54 53 a1dd ¬ 7 < n n Odd 7 < n n GoldbachOdd 5 < n n GoldbachOddW
55 6 54 pm2.61i n Odd 7 < n n GoldbachOdd 5 < n n GoldbachOddW
56 55 ralimia n Odd 7 < n n GoldbachOdd n Odd 5 < n n GoldbachOddW