Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem1.1 |
|
2 |
|
stirlinglem1.2 |
|
3 |
|
stirlinglem1.3 |
|
4 |
|
stirlinglem1.4 |
|
5 |
|
nnuz |
|
6 |
|
1zzd |
|
7 |
|
ax-1cn |
|
8 |
|
divcnv |
|
9 |
7 8
|
ax-mp |
|
10 |
4 9
|
eqbrtri |
|
11 |
10
|
a1i |
|
12 |
|
nnex |
|
13 |
12
|
mptex |
|
14 |
3 13
|
eqeltri |
|
15 |
14
|
a1i |
|
16 |
4
|
a1i |
|
17 |
|
simpr |
|
18 |
17
|
oveq2d |
|
19 |
|
id |
|
20 |
|
nnrp |
|
21 |
20
|
rpreccld |
|
22 |
16 18 19 21
|
fvmptd |
|
23 |
|
nnrecre |
|
24 |
22 23
|
eqeltrd |
|
25 |
24
|
adantl |
|
26 |
3
|
a1i |
|
27 |
17
|
oveq2d |
|
28 |
27
|
oveq1d |
|
29 |
28
|
oveq2d |
|
30 |
|
2re |
|
31 |
30
|
a1i |
|
32 |
|
nnre |
|
33 |
31 32
|
remulcld |
|
34 |
|
0le2 |
|
35 |
34
|
a1i |
|
36 |
20
|
rpge0d |
|
37 |
31 32 35 36
|
mulge0d |
|
38 |
33 37
|
ge0p1rpd |
|
39 |
38
|
rpreccld |
|
40 |
26 29 19 39
|
fvmptd |
|
41 |
39
|
rpred |
|
42 |
40 41
|
eqeltrd |
|
43 |
42
|
adantl |
|
44 |
|
1red |
|
45 |
|
0le1 |
|
46 |
45
|
a1i |
|
47 |
33 44
|
readdcld |
|
48 |
|
nncn |
|
49 |
48
|
mulid2d |
|
50 |
|
1lt2 |
|
51 |
50
|
a1i |
|
52 |
44 31 20 51
|
ltmul1dd |
|
53 |
49 52
|
eqbrtrrd |
|
54 |
33
|
ltp1d |
|
55 |
32 33 47 53 54
|
lttrd |
|
56 |
32 47 55
|
ltled |
|
57 |
20 38 44 46 56
|
lediv2ad |
|
58 |
57 40 22
|
3brtr4d |
|
59 |
58
|
adantl |
|
60 |
39
|
rpge0d |
|
61 |
60 40
|
breqtrrd |
|
62 |
61
|
adantl |
|
63 |
5 6 11 15 25 43 59 62
|
climsqz2 |
|
64 |
|
1cnd |
|
65 |
12
|
mptex |
|
66 |
2 65
|
eqeltri |
|
67 |
66
|
a1i |
|
68 |
43
|
recnd |
|
69 |
2
|
a1i |
|
70 |
29
|
oveq2d |
|
71 |
|
1cnd |
|
72 |
|
2cnd |
|
73 |
72 48
|
mulcld |
|
74 |
73 71
|
addcld |
|
75 |
38
|
rpne0d |
|
76 |
74 75
|
reccld |
|
77 |
71 76
|
subcld |
|
78 |
69 70 19 77
|
fvmptd |
|
79 |
40
|
eqcomd |
|
80 |
79
|
oveq2d |
|
81 |
78 80
|
eqtrd |
|
82 |
81
|
adantl |
|
83 |
5 6 63 64 67 68 82
|
climsubc2 |
|
84 |
|
1m0e1 |
|
85 |
83 84
|
breqtrdi |
|
86 |
64
|
halfcld |
|
87 |
12
|
mptex |
|
88 |
1 87
|
eqeltri |
|
89 |
88
|
a1i |
|
90 |
78 77
|
eqeltrd |
|
91 |
90
|
adantl |
|
92 |
|
nncn |
|
93 |
92
|
sqcld |
|
94 |
93
|
mulid2d |
|
95 |
94
|
eqcomd |
|
96 |
|
2cnd |
|
97 |
96 92
|
mulcld |
|
98 |
|
1cnd |
|
99 |
92 97 98
|
adddid |
|
100 |
92 96 92
|
mul12d |
|
101 |
92
|
sqvald |
|
102 |
101
|
eqcomd |
|
103 |
102
|
oveq2d |
|
104 |
100 103
|
eqtrd |
|
105 |
92
|
mulid1d |
|
106 |
104 105
|
oveq12d |
|
107 |
|
2ne0 |
|
108 |
107
|
a1i |
|
109 |
92 96 108
|
divcan2d |
|
110 |
109
|
eqcomd |
|
111 |
110
|
oveq2d |
|
112 |
92
|
halfcld |
|
113 |
96 93 112
|
adddid |
|
114 |
111 113
|
eqtr4d |
|
115 |
99 106 114
|
3eqtrd |
|
116 |
95 115
|
oveq12d |
|
117 |
93 112
|
addcld |
|
118 |
|
nnrp |
|
119 |
|
2z |
|
120 |
119
|
a1i |
|
121 |
118 120
|
rpexpcld |
|
122 |
118
|
rphalfcld |
|
123 |
121 122
|
rpaddcld |
|
124 |
123
|
rpne0d |
|
125 |
98 96 93 117 108 124
|
divmuldivd |
|
126 |
93 112
|
pncand |
|
127 |
126
|
eqcomd |
|
128 |
127
|
oveq1d |
|
129 |
117 112 117 124
|
divsubdird |
|
130 |
117 124
|
dividd |
|
131 |
130
|
oveq1d |
|
132 |
128 129 131
|
3eqtrd |
|
133 |
|
nnne0 |
|
134 |
96 92 133
|
divcld |
|
135 |
96 92 108 133
|
divne0d |
|
136 |
112 117 134 124 135
|
divcan5rd |
|
137 |
92 96 133 108
|
divcan6d |
|
138 |
93 112 134
|
adddird |
|
139 |
93 96 92 133
|
div12d |
|
140 |
|
1e2m1 |
|
141 |
140
|
oveq2i |
|
142 |
92
|
exp1d |
|
143 |
92 133 120
|
expm1d |
|
144 |
141 142 143
|
3eqtr3a |
|
145 |
144
|
eqcomd |
|
146 |
145
|
oveq2d |
|
147 |
139 146
|
eqtrd |
|
148 |
147 137
|
oveq12d |
|
149 |
138 148
|
eqtrd |
|
150 |
137 149
|
oveq12d |
|
151 |
136 150
|
eqtr3d |
|
152 |
151
|
oveq2d |
|
153 |
132 152
|
eqtrd |
|
154 |
153
|
oveq2d |
|
155 |
116 125 154
|
3eqtr2d |
|
156 |
155
|
mpteq2ia |
|
157 |
1 156
|
eqtri |
|
158 |
157
|
a1i |
|
159 |
70
|
oveq2d |
|
160 |
71
|
halfcld |
|
161 |
160 77
|
mulcld |
|
162 |
158 159 19 161
|
fvmptd |
|
163 |
78
|
oveq2d |
|
164 |
162 163
|
eqtr4d |
|
165 |
164
|
adantl |
|
166 |
5 6 85 86 89 91 165
|
climmulc2 |
|
167 |
166
|
mptru |
|
168 |
|
halfcn |
|
169 |
168
|
mulid1i |
|
170 |
167 169
|
breqtri |
|