Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem10.1 |
|
2 |
|
stirlinglem10.2 |
|
3 |
|
stirlinglem10.4 |
|
4 |
|
stirlinglem10.5 |
|
5 |
|
nnuz |
|
6 |
|
1zzd |
|
7 |
|
eqid |
|
8 |
1 2 7 3
|
stirlinglem9 |
|
9 |
|
2cnd |
|
10 |
|
nncn |
|
11 |
9 10
|
mulcld |
|
12 |
|
1cnd |
|
13 |
11 12
|
addcld |
|
14 |
13
|
sqcld |
|
15 |
|
0red |
|
16 |
|
1red |
|
17 |
|
2re |
|
18 |
17
|
a1i |
|
19 |
|
nnre |
|
20 |
18 19
|
remulcld |
|
21 |
20 16
|
readdcld |
|
22 |
|
0lt1 |
|
23 |
22
|
a1i |
|
24 |
|
2rp |
|
25 |
24
|
a1i |
|
26 |
|
nnrp |
|
27 |
25 26
|
rpmulcld |
|
28 |
16 27
|
ltaddrp2d |
|
29 |
15 16 21 23 28
|
lttrd |
|
30 |
29
|
gt0ne0d |
|
31 |
|
2z |
|
32 |
31
|
a1i |
|
33 |
13 30 32
|
expne0d |
|
34 |
14 33
|
reccld |
|
35 |
16
|
renegcld |
|
36 |
21
|
resqcld |
|
37 |
36 33
|
rereccld |
|
38 |
|
1re |
|
39 |
|
lt0neg2 |
|
40 |
38 39
|
ax-mp |
|
41 |
23 40
|
sylib |
|
42 |
21 30
|
sqgt0d |
|
43 |
36 42
|
recgt0d |
|
44 |
35 15 37 41 43
|
lttrd |
|
45 |
|
2nn |
|
46 |
45
|
a1i |
|
47 |
|
expgt1 |
|
48 |
21 46 28 47
|
syl3anc |
|
49 |
36 42
|
elrpd |
|
50 |
49
|
recgt1d |
|
51 |
48 50
|
mpbid |
|
52 |
37 16
|
absltd |
|
53 |
44 51 52
|
mpbir2and |
|
54 |
|
1nn0 |
|
55 |
54
|
a1i |
|
56 |
4
|
a1i |
|
57 |
|
simpr |
|
58 |
57
|
oveq2d |
|
59 |
|
elnnuz |
|
60 |
59
|
biimpri |
|
61 |
60
|
adantl |
|
62 |
34
|
adantr |
|
63 |
61
|
nnnn0d |
|
64 |
62 63
|
expcld |
|
65 |
56 58 61 64
|
fvmptd |
|
66 |
34 53 55 65
|
geolim2 |
|
67 |
34
|
exp1d |
|
68 |
14 33
|
dividd |
|
69 |
68
|
eqcomd |
|
70 |
69
|
oveq1d |
|
71 |
49
|
rpcnne0d |
|
72 |
|
divsubdir |
|
73 |
14 12 71 72
|
syl3anc |
|
74 |
|
ax-1cn |
|
75 |
|
binom2 |
|
76 |
11 74 75
|
sylancl |
|
77 |
76
|
oveq1d |
|
78 |
9 10
|
sqmuld |
|
79 |
|
sq2 |
|
80 |
79
|
a1i |
|
81 |
80
|
oveq1d |
|
82 |
78 81
|
eqtrd |
|
83 |
11
|
mulid1d |
|
84 |
83
|
oveq2d |
|
85 |
9 9 10
|
mulassd |
|
86 |
|
2t2e4 |
|
87 |
86
|
a1i |
|
88 |
87
|
oveq1d |
|
89 |
84 85 88
|
3eqtr2d |
|
90 |
82 89
|
oveq12d |
|
91 |
|
4cn |
|
92 |
91
|
a1i |
|
93 |
10
|
sqcld |
|
94 |
92 93 10
|
adddid |
|
95 |
10
|
sqvald |
|
96 |
10
|
mulid1d |
|
97 |
96
|
eqcomd |
|
98 |
95 97
|
oveq12d |
|
99 |
10 10 12
|
adddid |
|
100 |
98 99
|
eqtr4d |
|
101 |
100
|
oveq2d |
|
102 |
90 94 101
|
3eqtr2d |
|
103 |
|
sq1 |
|
104 |
103
|
a1i |
|
105 |
102 104
|
oveq12d |
|
106 |
105
|
oveq1d |
|
107 |
10 12
|
addcld |
|
108 |
10 107
|
mulcld |
|
109 |
92 108
|
mulcld |
|
110 |
109 12
|
pncand |
|
111 |
77 106 110
|
3eqtrd |
|
112 |
111
|
oveq1d |
|
113 |
70 73 112
|
3eqtr2d |
|
114 |
67 113
|
oveq12d |
|
115 |
|
4pos |
|
116 |
115
|
a1i |
|
117 |
116
|
gt0ne0d |
|
118 |
|
nnne0 |
|
119 |
19 16
|
readdcld |
|
120 |
|
nngt0 |
|
121 |
19
|
ltp1d |
|
122 |
15 19 119 120 121
|
lttrd |
|
123 |
122
|
gt0ne0d |
|
124 |
10 107 118 123
|
mulne0d |
|
125 |
92 108 117 124
|
mulne0d |
|
126 |
12 14 109 14 33 33 125
|
divdivdivd |
|
127 |
12 14
|
mulcomd |
|
128 |
127
|
oveq1d |
|
129 |
12
|
mulid1d |
|
130 |
129
|
eqcomd |
|
131 |
130
|
oveq1d |
|
132 |
12 92 12 108 117 124
|
divmuldivd |
|
133 |
131 132
|
eqtr4d |
|
134 |
68 133
|
oveq12d |
|
135 |
14 14 12 109 33 125
|
divmuldivd |
|
136 |
92 117
|
reccld |
|
137 |
108 124
|
reccld |
|
138 |
136 137
|
mulcld |
|
139 |
138
|
mulid2d |
|
140 |
134 135 139
|
3eqtr3d |
|
141 |
126 128 140
|
3eqtrd |
|
142 |
114 141
|
eqtrd |
|
143 |
66 142
|
breqtrd |
|
144 |
59
|
biimpi |
|
145 |
144
|
adantl |
|
146 |
|
oveq2 |
|
147 |
146
|
oveq1d |
|
148 |
147
|
oveq2d |
|
149 |
146
|
oveq2d |
|
150 |
148 149
|
oveq12d |
|
151 |
|
elfznn |
|
152 |
151
|
adantl |
|
153 |
|
2cnd |
|
154 |
152
|
nncnd |
|
155 |
153 154
|
mulcld |
|
156 |
|
1cnd |
|
157 |
155 156
|
addcld |
|
158 |
|
0red |
|
159 |
|
1red |
|
160 |
17
|
a1i |
|
161 |
|
nnre |
|
162 |
160 161
|
remulcld |
|
163 |
162 159
|
readdcld |
|
164 |
22
|
a1i |
|
165 |
24
|
a1i |
|
166 |
|
nnrp |
|
167 |
165 166
|
rpmulcld |
|
168 |
159 167
|
ltaddrp2d |
|
169 |
158 159 163 164 168
|
lttrd |
|
170 |
151 169
|
syl |
|
171 |
170
|
gt0ne0d |
|
172 |
171
|
adantl |
|
173 |
157 172
|
reccld |
|
174 |
10
|
adantr |
|
175 |
153 174
|
mulcld |
|
176 |
175 156
|
addcld |
|
177 |
30
|
adantr |
|
178 |
176 177
|
reccld |
|
179 |
|
2nn0 |
|
180 |
179
|
a1i |
|
181 |
152
|
nnnn0d |
|
182 |
180 181
|
nn0mulcld |
|
183 |
178 182
|
expcld |
|
184 |
173 183
|
mulcld |
|
185 |
3 150 152 184
|
fvmptd3 |
|
186 |
185
|
adantlr |
|
187 |
169
|
gt0ne0d |
|
188 |
163 187
|
rereccld |
|
189 |
151 188
|
syl |
|
190 |
189
|
adantl |
|
191 |
21 30
|
rereccld |
|
192 |
191
|
adantr |
|
193 |
192 182
|
reexpcld |
|
194 |
193
|
adantlr |
|
195 |
190 194
|
remulcld |
|
196 |
186 195
|
eqeltrd |
|
197 |
|
readdcl |
|
198 |
197
|
adantl |
|
199 |
145 196 198
|
seqcl |
|
200 |
|
oveq2 |
|
201 |
34
|
adantr |
|
202 |
201 181
|
expcld |
|
203 |
4 200 152 202
|
fvmptd3 |
|
204 |
37
|
adantr |
|
205 |
204 181
|
reexpcld |
|
206 |
203 205
|
eqeltrd |
|
207 |
206
|
adantlr |
|
208 |
145 207 198
|
seqcl |
|
209 |
31
|
a1i |
|
210 |
|
elfzelz |
|
211 |
209 210
|
zmulcld |
|
212 |
|
1exp |
|
213 |
211 212
|
syl |
|
214 |
|
1exp |
|
215 |
210 214
|
syl |
|
216 |
213 215
|
eqtr4d |
|
217 |
216
|
adantl |
|
218 |
176 181 180
|
expmuld |
|
219 |
217 218
|
oveq12d |
|
220 |
156 176 177 182
|
expdivd |
|
221 |
176
|
sqcld |
|
222 |
31
|
a1i |
|
223 |
176 177 222
|
expne0d |
|
224 |
156 221 223 181
|
expdivd |
|
225 |
219 220 224
|
3eqtr4d |
|
226 |
225
|
oveq2d |
|
227 |
|
1rp |
|
228 |
227
|
a1i |
|
229 |
17
|
a1i |
|
230 |
152
|
nnred |
|
231 |
229 230
|
remulcld |
|
232 |
180
|
nn0ge0d |
|
233 |
181
|
nn0ge0d |
|
234 |
229 230 232 233
|
mulge0d |
|
235 |
231 234
|
ge0p1rpd |
|
236 |
|
1red |
|
237 |
228
|
rpge0d |
|
238 |
159 163 168
|
ltled |
|
239 |
151 238
|
syl |
|
240 |
239
|
adantl |
|
241 |
228 235 236 237 240
|
lediv2ad |
|
242 |
156
|
div1d |
|
243 |
241 242
|
breqtrd |
|
244 |
152 188
|
syl |
|
245 |
19
|
adantr |
|
246 |
229 245
|
remulcld |
|
247 |
15 19 120
|
ltled |
|
248 |
247
|
adantr |
|
249 |
229 245 232 248
|
mulge0d |
|
250 |
246 249
|
ge0p1rpd |
|
251 |
250 222
|
rpexpcld |
|
252 |
251
|
rpreccld |
|
253 |
210
|
adantl |
|
254 |
252 253
|
rpexpcld |
|
255 |
244 236 254
|
lemul1d |
|
256 |
243 255
|
mpbid |
|
257 |
202
|
mulid2d |
|
258 |
256 257
|
breqtrd |
|
259 |
226 258
|
eqbrtrd |
|
260 |
259 185 203
|
3brtr4d |
|
261 |
260
|
adantlr |
|
262 |
145 196 207 261
|
serle |
|
263 |
5 6 8 143 199 208 262
|
climle |
|