Metamath Proof Explorer


Theorem stirlinglem12

Description: The sequence B is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem12.1 A = n n ! 2 n n e n
stirlinglem12.2 B = n log A n
stirlinglem12.3 F = n 1 n n + 1
Assertion stirlinglem12 N B 1 1 4 B N

Proof

Step Hyp Ref Expression
1 stirlinglem12.1 A = n n ! 2 n n e n
2 stirlinglem12.2 B = n log A n
3 stirlinglem12.3 F = n 1 n n + 1
4 1nn 1
5 1 stirlinglem2 1 A 1 +
6 relogcl A 1 + log A 1
7 4 5 6 mp2b log A 1
8 nfcv _ n 1
9 nfcv _ n log
10 nfmpt1 _ n n n ! 2 n n e n
11 1 10 nfcxfr _ n A
12 11 8 nffv _ n A 1
13 9 12 nffv _ n log A 1
14 2fveq3 n = 1 log A n = log A 1
15 8 13 14 2 fvmptf 1 log A 1 B 1 = log A 1
16 4 7 15 mp2an B 1 = log A 1
17 16 7 eqeltri B 1
18 17 a1i N B 1
19 1 stirlinglem2 N A N +
20 19 relogcld N log A N
21 nfcv _ n N
22 11 21 nffv _ n A N
23 9 22 nffv _ n log A N
24 2fveq3 n = N log A n = log A N
25 21 23 24 2 fvmptf N log A N B N = log A N
26 20 25 mpdan N B N = log A N
27 26 20 eqeltrd N B N
28 4re 4
29 4ne0 4 0
30 28 29 rereccli 1 4
31 30 a1i N 1 4
32 fveq2 k = j B k = B j
33 fveq2 k = j + 1 B k = B j + 1
34 fveq2 k = 1 B k = B 1
35 fveq2 k = N B k = B N
36 elnnuz N N 1
37 36 biimpi N N 1
38 elfznn k 1 N k
39 1 stirlinglem2 k A k +
40 38 39 syl k 1 N A k +
41 40 relogcld k 1 N log A k
42 nfcv _ n k
43 11 42 nffv _ n A k
44 9 43 nffv _ n log A k
45 2fveq3 n = k log A n = log A k
46 42 44 45 2 fvmptf k log A k B k = log A k
47 38 41 46 syl2anc k 1 N B k = log A k
48 47 adantl N k 1 N B k = log A k
49 40 rpcnd k 1 N A k
50 49 adantl N k 1 N A k
51 39 rpne0d k A k 0
52 38 51 syl k 1 N A k 0
53 52 adantl N k 1 N A k 0
54 50 53 logcld N k 1 N log A k
55 48 54 eqeltrd N k 1 N B k
56 32 33 34 35 37 55 telfsumo N j 1 ..^ N B j B j + 1 = B 1 B N
57 nnz N N
58 fzoval N 1 ..^ N = 1 N 1
59 57 58 syl N 1 ..^ N = 1 N 1
60 59 sumeq1d N j 1 ..^ N B j B j + 1 = j = 1 N 1 B j B j + 1
61 56 60 eqtr3d N B 1 B N = j = 1 N 1 B j B j + 1
62 fzfid N 1 N 1 Fin
63 elfznn j 1 N 1 j
64 63 adantl N j 1 N 1 j
65 1 stirlinglem2 j A j +
66 65 relogcld j log A j
67 nfcv _ n j
68 11 67 nffv _ n A j
69 9 68 nffv _ n log A j
70 2fveq3 n = j log A n = log A j
71 67 69 70 2 fvmptf j log A j B j = log A j
72 66 71 mpdan j B j = log A j
73 72 66 eqeltrd j B j
74 64 73 syl N j 1 N 1 B j
75 peano2nn j j + 1
76 1 stirlinglem2 j + 1 A j + 1 +
77 75 76 syl j A j + 1 +
78 77 relogcld j log A j + 1
79 nfcv _ n j + 1
80 11 79 nffv _ n A j + 1
81 9 80 nffv _ n log A j + 1
82 2fveq3 n = j + 1 log A n = log A j + 1
83 79 81 82 2 fvmptf j + 1 log A j + 1 B j + 1 = log A j + 1
84 75 78 83 syl2anc j B j + 1 = log A j + 1
85 84 78 eqeltrd j B j + 1
86 63 85 syl j 1 N 1 B j + 1
87 86 adantl N j 1 N 1 B j + 1
88 74 87 resubcld N j 1 N 1 B j B j + 1
89 62 88 fsumrecl N j = 1 N 1 B j B j + 1
90 30 a1i N j 1 N 1 1 4
91 63 nnred j 1 N 1 j
92 1red j 1 N 1 1
93 91 92 readdcld j 1 N 1 j + 1
94 91 93 remulcld j 1 N 1 j j + 1
95 91 recnd j 1 N 1 j
96 1cnd j 1 N 1 1
97 95 96 addcld j 1 N 1 j + 1
98 63 nnne0d j 1 N 1 j 0
99 75 nnne0d j j + 1 0
100 63 99 syl j 1 N 1 j + 1 0
101 95 97 98 100 mulne0d j 1 N 1 j j + 1 0
102 94 101 rereccld j 1 N 1 1 j j + 1
103 102 adantl N j 1 N 1 1 j j + 1
104 90 103 remulcld N j 1 N 1 1 4 1 j j + 1
105 62 104 fsumrecl N j = 1 N 1 1 4 1 j j + 1
106 eqid i 1 2 i + 1 1 2 j + 1 2 i = i 1 2 i + 1 1 2 j + 1 2 i
107 eqid i 1 2 j + 1 2 i = i 1 2 j + 1 2 i
108 1 2 106 107 stirlinglem10 j B j B j + 1 1 4 1 j j + 1
109 64 108 syl N j 1 N 1 B j B j + 1 1 4 1 j j + 1
110 62 88 104 109 fsumle N j = 1 N 1 B j B j + 1 j = 1 N 1 1 4 1 j j + 1
111 62 103 fsumrecl N j = 1 N 1 1 j j + 1
112 1red N 1
113 4pos 0 < 4
114 28 113 elrpii 4 +
115 114 a1i N 4 +
116 0red N 0
117 0lt1 0 < 1
118 117 a1i N 0 < 1
119 116 112 118 ltled N 0 1
120 112 115 119 divge0d N 0 1 4
121 eqid N = N
122 eluznn N j N j
123 3 a1i j F = n 1 n n + 1
124 simpr j n = j n = j
125 124 oveq1d j n = j n + 1 = j + 1
126 124 125 oveq12d j n = j n n + 1 = j j + 1
127 126 oveq2d j n = j 1 n n + 1 = 1 j j + 1
128 id j j
129 nnre j j
130 1red j 1
131 129 130 readdcld j j + 1
132 129 131 remulcld j j j + 1
133 nncn j j
134 1cnd j 1
135 133 134 addcld j j + 1
136 nnne0 j j 0
137 133 135 136 99 mulne0d j j j + 1 0
138 132 137 rereccld j 1 j j + 1
139 123 127 128 138 fvmptd j F j = 1 j j + 1
140 122 139 syl N j N F j = 1 j j + 1
141 122 nnred N j N j
142 1red N j N 1
143 141 142 readdcld N j N j + 1
144 141 143 remulcld N j N j j + 1
145 141 recnd N j N j
146 1cnd N j N 1
147 145 146 addcld N j N j + 1
148 122 nnne0d N j N j 0
149 122 99 syl N j N j + 1 0
150 145 147 148 149 mulne0d N j N j j + 1 0
151 144 150 rereccld N j N 1 j j + 1
152 seqeq1 N = 1 seq N + F = seq 1 + F
153 3 trireciplem seq 1 + F 1
154 climrel Rel
155 154 releldmi seq 1 + F 1 seq 1 + F dom
156 153 155 mp1i N = 1 seq 1 + F dom
157 152 156 eqeltrd N = 1 seq N + F dom
158 157 adantl N N = 1 seq N + F dom
159 simpl N ¬ N = 1 N
160 simpr N ¬ N = 1 ¬ N = 1
161 elnn1uz2 N N = 1 N 2
162 159 161 sylib N ¬ N = 1 N = 1 N 2
163 162 ord N ¬ N = 1 ¬ N = 1 N 2
164 160 163 mpd N ¬ N = 1 N 2
165 uz2m1nn N 2 N 1
166 164 165 syl N ¬ N = 1 N 1
167 nncn N N
168 167 adantr N N 1 N
169 1cnd N N 1 1
170 168 169 npcand N N 1 N - 1 + 1 = N
171 170 eqcomd N N 1 N = N - 1 + 1
172 171 seqeq1d N N 1 seq N + F = seq N - 1 + 1 + F
173 nnuz = 1
174 id N 1 N 1
175 138 recnd j 1 j j + 1
176 139 175 eqeltrd j F j
177 176 adantl N 1 j F j
178 153 a1i N 1 seq 1 + F 1
179 173 174 177 178 clim2ser N 1 seq N - 1 + 1 + F 1 seq 1 + F N 1
180 179 adantl N N 1 seq N - 1 + 1 + F 1 seq 1 + F N 1
181 172 180 eqbrtrd N N 1 seq N + F 1 seq 1 + F N 1
182 154 releldmi seq N + F 1 seq 1 + F N 1 seq N + F dom
183 181 182 syl N N 1 seq N + F dom
184 159 166 183 syl2anc N ¬ N = 1 seq N + F dom
185 158 184 pm2.61dan N seq N + F dom
186 121 57 140 151 185 isumrecl N j N 1 j j + 1
187 122 nnrpd N j N j +
188 187 rpge0d N j N 0 j
189 141 188 ge0p1rpd N j N j + 1 +
190 187 189 rpmulcld N j N j j + 1 +
191 119 adantr N j N 0 1
192 142 190 191 divge0d N j N 0 1 j j + 1
193 121 57 140 151 185 192 isumge0 N 0 j N 1 j j + 1
194 116 186 111 193 leadd2dd N j = 1 N 1 1 j j + 1 + 0 j = 1 N 1 1 j j + 1 + j N 1 j j + 1
195 111 recnd N j = 1 N 1 1 j j + 1
196 195 addid1d N j = 1 N 1 1 j j + 1 + 0 = j = 1 N 1 1 j j + 1
197 196 eqcomd N j = 1 N 1 1 j j + 1 = j = 1 N 1 1 j j + 1 + 0
198 id N N
199 139 adantl N j F j = 1 j j + 1
200 133 adantl N j j
201 1cnd N j 1
202 200 201 addcld N j j + 1
203 200 202 mulcld N j j j + 1
204 136 adantl N j j 0
205 99 adantl N j j + 1 0
206 200 202 204 205 mulne0d N j j j + 1 0
207 203 206 reccld N j 1 j j + 1
208 153 155 mp1i N seq 1 + F dom
209 173 121 198 199 207 208 isumsplit N j 1 j j + 1 = j = 1 N 1 1 j j + 1 + j N 1 j j + 1
210 194 197 209 3brtr4d N j = 1 N 1 1 j j + 1 j 1 j j + 1
211 1zzd 1
212 139 adantl j F j = 1 j j + 1
213 175 adantl j 1 j j + 1
214 153 a1i seq 1 + F 1
215 173 211 212 213 214 isumclim j 1 j j + 1 = 1
216 215 mptru j 1 j j + 1 = 1
217 210 216 breqtrdi N j = 1 N 1 1 j j + 1 1
218 111 112 31 120 217 lemul2ad N 1 4 j = 1 N 1 1 j j + 1 1 4 1
219 4cn 4
220 219 a1i N 4
221 113 a1i N 0 < 4
222 221 gt0ne0d N 4 0
223 220 222 reccld N 1 4
224 103 recnd N j 1 N 1 1 j j + 1
225 62 223 224 fsummulc2 N 1 4 j = 1 N 1 1 j j + 1 = j = 1 N 1 1 4 1 j j + 1
226 223 mulid1d N 1 4 1 = 1 4
227 218 225 226 3brtr3d N j = 1 N 1 1 4 1 j j + 1 1 4
228 89 105 31 110 227 letrd N j = 1 N 1 B j B j + 1 1 4
229 61 228 eqbrtrd N B 1 B N 1 4
230 18 27 31 229 subled N B 1 1 4 B N