Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem12.1 |
|
2 |
|
stirlinglem12.2 |
|
3 |
|
stirlinglem12.3 |
|
4 |
|
1nn |
|
5 |
1
|
stirlinglem2 |
|
6 |
|
relogcl |
|
7 |
4 5 6
|
mp2b |
|
8 |
|
nfcv |
|
9 |
|
nfcv |
|
10 |
|
nfmpt1 |
|
11 |
1 10
|
nfcxfr |
|
12 |
11 8
|
nffv |
|
13 |
9 12
|
nffv |
|
14 |
|
2fveq3 |
|
15 |
8 13 14 2
|
fvmptf |
|
16 |
4 7 15
|
mp2an |
|
17 |
16 7
|
eqeltri |
|
18 |
17
|
a1i |
|
19 |
1
|
stirlinglem2 |
|
20 |
19
|
relogcld |
|
21 |
|
nfcv |
|
22 |
11 21
|
nffv |
|
23 |
9 22
|
nffv |
|
24 |
|
2fveq3 |
|
25 |
21 23 24 2
|
fvmptf |
|
26 |
20 25
|
mpdan |
|
27 |
26 20
|
eqeltrd |
|
28 |
|
4re |
|
29 |
|
4ne0 |
|
30 |
28 29
|
rereccli |
|
31 |
30
|
a1i |
|
32 |
|
fveq2 |
|
33 |
|
fveq2 |
|
34 |
|
fveq2 |
|
35 |
|
fveq2 |
|
36 |
|
elnnuz |
|
37 |
36
|
biimpi |
|
38 |
|
elfznn |
|
39 |
1
|
stirlinglem2 |
|
40 |
38 39
|
syl |
|
41 |
40
|
relogcld |
|
42 |
|
nfcv |
|
43 |
11 42
|
nffv |
|
44 |
9 43
|
nffv |
|
45 |
|
2fveq3 |
|
46 |
42 44 45 2
|
fvmptf |
|
47 |
38 41 46
|
syl2anc |
|
48 |
47
|
adantl |
|
49 |
40
|
rpcnd |
|
50 |
49
|
adantl |
|
51 |
39
|
rpne0d |
|
52 |
38 51
|
syl |
|
53 |
52
|
adantl |
|
54 |
50 53
|
logcld |
|
55 |
48 54
|
eqeltrd |
|
56 |
32 33 34 35 37 55
|
telfsumo |
|
57 |
|
nnz |
|
58 |
|
fzoval |
|
59 |
57 58
|
syl |
|
60 |
59
|
sumeq1d |
|
61 |
56 60
|
eqtr3d |
|
62 |
|
fzfid |
|
63 |
|
elfznn |
|
64 |
63
|
adantl |
|
65 |
1
|
stirlinglem2 |
|
66 |
65
|
relogcld |
|
67 |
|
nfcv |
|
68 |
11 67
|
nffv |
|
69 |
9 68
|
nffv |
|
70 |
|
2fveq3 |
|
71 |
67 69 70 2
|
fvmptf |
|
72 |
66 71
|
mpdan |
|
73 |
72 66
|
eqeltrd |
|
74 |
64 73
|
syl |
|
75 |
|
peano2nn |
|
76 |
1
|
stirlinglem2 |
|
77 |
75 76
|
syl |
|
78 |
77
|
relogcld |
|
79 |
|
nfcv |
|
80 |
11 79
|
nffv |
|
81 |
9 80
|
nffv |
|
82 |
|
2fveq3 |
|
83 |
79 81 82 2
|
fvmptf |
|
84 |
75 78 83
|
syl2anc |
|
85 |
84 78
|
eqeltrd |
|
86 |
63 85
|
syl |
|
87 |
86
|
adantl |
|
88 |
74 87
|
resubcld |
|
89 |
62 88
|
fsumrecl |
|
90 |
30
|
a1i |
|
91 |
63
|
nnred |
|
92 |
|
1red |
|
93 |
91 92
|
readdcld |
|
94 |
91 93
|
remulcld |
|
95 |
91
|
recnd |
|
96 |
|
1cnd |
|
97 |
95 96
|
addcld |
|
98 |
63
|
nnne0d |
|
99 |
75
|
nnne0d |
|
100 |
63 99
|
syl |
|
101 |
95 97 98 100
|
mulne0d |
|
102 |
94 101
|
rereccld |
|
103 |
102
|
adantl |
|
104 |
90 103
|
remulcld |
|
105 |
62 104
|
fsumrecl |
|
106 |
|
eqid |
|
107 |
|
eqid |
|
108 |
1 2 106 107
|
stirlinglem10 |
|
109 |
64 108
|
syl |
|
110 |
62 88 104 109
|
fsumle |
|
111 |
62 103
|
fsumrecl |
|
112 |
|
1red |
|
113 |
|
4pos |
|
114 |
28 113
|
elrpii |
|
115 |
114
|
a1i |
|
116 |
|
0red |
|
117 |
|
0lt1 |
|
118 |
117
|
a1i |
|
119 |
116 112 118
|
ltled |
|
120 |
112 115 119
|
divge0d |
|
121 |
|
eqid |
|
122 |
|
eluznn |
|
123 |
3
|
a1i |
|
124 |
|
simpr |
|
125 |
124
|
oveq1d |
|
126 |
124 125
|
oveq12d |
|
127 |
126
|
oveq2d |
|
128 |
|
id |
|
129 |
|
nnre |
|
130 |
|
1red |
|
131 |
129 130
|
readdcld |
|
132 |
129 131
|
remulcld |
|
133 |
|
nncn |
|
134 |
|
1cnd |
|
135 |
133 134
|
addcld |
|
136 |
|
nnne0 |
|
137 |
133 135 136 99
|
mulne0d |
|
138 |
132 137
|
rereccld |
|
139 |
123 127 128 138
|
fvmptd |
|
140 |
122 139
|
syl |
|
141 |
122
|
nnred |
|
142 |
|
1red |
|
143 |
141 142
|
readdcld |
|
144 |
141 143
|
remulcld |
|
145 |
141
|
recnd |
|
146 |
|
1cnd |
|
147 |
145 146
|
addcld |
|
148 |
122
|
nnne0d |
|
149 |
122 99
|
syl |
|
150 |
145 147 148 149
|
mulne0d |
|
151 |
144 150
|
rereccld |
|
152 |
|
seqeq1 |
|
153 |
3
|
trireciplem |
|
154 |
|
climrel |
|
155 |
154
|
releldmi |
|
156 |
153 155
|
mp1i |
|
157 |
152 156
|
eqeltrd |
|
158 |
157
|
adantl |
|
159 |
|
simpl |
|
160 |
|
simpr |
|
161 |
|
elnn1uz2 |
|
162 |
159 161
|
sylib |
|
163 |
162
|
ord |
|
164 |
160 163
|
mpd |
|
165 |
|
uz2m1nn |
|
166 |
164 165
|
syl |
|
167 |
|
nncn |
|
168 |
167
|
adantr |
|
169 |
|
1cnd |
|
170 |
168 169
|
npcand |
|
171 |
170
|
eqcomd |
|
172 |
171
|
seqeq1d |
|
173 |
|
nnuz |
|
174 |
|
id |
|
175 |
138
|
recnd |
|
176 |
139 175
|
eqeltrd |
|
177 |
176
|
adantl |
|
178 |
153
|
a1i |
|
179 |
173 174 177 178
|
clim2ser |
|
180 |
179
|
adantl |
|
181 |
172 180
|
eqbrtrd |
|
182 |
154
|
releldmi |
|
183 |
181 182
|
syl |
|
184 |
159 166 183
|
syl2anc |
|
185 |
158 184
|
pm2.61dan |
|
186 |
121 57 140 151 185
|
isumrecl |
|
187 |
122
|
nnrpd |
|
188 |
187
|
rpge0d |
|
189 |
141 188
|
ge0p1rpd |
|
190 |
187 189
|
rpmulcld |
|
191 |
119
|
adantr |
|
192 |
142 190 191
|
divge0d |
|
193 |
121 57 140 151 185 192
|
isumge0 |
|
194 |
116 186 111 193
|
leadd2dd |
|
195 |
111
|
recnd |
|
196 |
195
|
addid1d |
|
197 |
196
|
eqcomd |
|
198 |
|
id |
|
199 |
139
|
adantl |
|
200 |
133
|
adantl |
|
201 |
|
1cnd |
|
202 |
200 201
|
addcld |
|
203 |
200 202
|
mulcld |
|
204 |
136
|
adantl |
|
205 |
99
|
adantl |
|
206 |
200 202 204 205
|
mulne0d |
|
207 |
203 206
|
reccld |
|
208 |
153 155
|
mp1i |
|
209 |
173 121 198 199 207 208
|
isumsplit |
|
210 |
194 197 209
|
3brtr4d |
|
211 |
|
1zzd |
|
212 |
139
|
adantl |
|
213 |
175
|
adantl |
|
214 |
153
|
a1i |
|
215 |
173 211 212 213 214
|
isumclim |
|
216 |
215
|
mptru |
|
217 |
210 216
|
breqtrdi |
|
218 |
111 112 31 120 217
|
lemul2ad |
|
219 |
|
4cn |
|
220 |
219
|
a1i |
|
221 |
113
|
a1i |
|
222 |
221
|
gt0ne0d |
|
223 |
220 222
|
reccld |
|
224 |
103
|
recnd |
|
225 |
62 223 224
|
fsummulc2 |
|
226 |
223
|
mulid1d |
|
227 |
218 225 226
|
3brtr3d |
|
228 |
89 105 31 110 227
|
letrd |
|
229 |
61 228
|
eqbrtrd |
|
230 |
18 27 31 229
|
subled |
|