Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem14.1 |
|
2 |
|
stirlinglem14.2 |
|
3 |
1 2
|
stirlinglem13 |
|
4 |
|
simpl |
|
5 |
4
|
rpefcld |
|
6 |
|
nnuz |
|
7 |
|
1zzd |
|
8 |
|
efcn |
|
9 |
8
|
a1i |
|
10 |
|
nnnn0 |
|
11 |
|
faccl |
|
12 |
|
nncn |
|
13 |
10 11 12
|
3syl |
|
14 |
|
2cnd |
|
15 |
|
nncn |
|
16 |
14 15
|
mulcld |
|
17 |
16
|
sqrtcld |
|
18 |
|
epr |
|
19 |
|
rpcn |
|
20 |
18 19
|
ax-mp |
|
21 |
20
|
a1i |
|
22 |
|
0re |
|
23 |
|
epos |
|
24 |
22 23
|
gtneii |
|
25 |
24
|
a1i |
|
26 |
15 21 25
|
divcld |
|
27 |
26 10
|
expcld |
|
28 |
17 27
|
mulcld |
|
29 |
|
2rp |
|
30 |
29
|
a1i |
|
31 |
|
nnrp |
|
32 |
30 31
|
rpmulcld |
|
33 |
32
|
sqrtgt0d |
|
34 |
33
|
gt0ne0d |
|
35 |
|
nnne0 |
|
36 |
15 21 35 25
|
divne0d |
|
37 |
|
nnz |
|
38 |
26 36 37
|
expne0d |
|
39 |
17 27 34 38
|
mulne0d |
|
40 |
13 28 39
|
divcld |
|
41 |
1
|
fvmpt2 |
|
42 |
40 41
|
mpdan |
|
43 |
42 40
|
eqeltrd |
|
44 |
|
nnne0 |
|
45 |
10 11 44
|
3syl |
|
46 |
13 28 45 39
|
divne0d |
|
47 |
42 46
|
eqnetrd |
|
48 |
43 47
|
logcld |
|
49 |
2 48
|
fmpti |
|
50 |
49
|
a1i |
|
51 |
|
simpr |
|
52 |
4
|
recnd |
|
53 |
6 7 9 50 51 52
|
climcncf |
|
54 |
8
|
elexi |
|
55 |
|
nnex |
|
56 |
55
|
mptex |
|
57 |
2 56
|
eqeltri |
|
58 |
54 57
|
coex |
|
59 |
58
|
a1i |
|
60 |
55
|
mptex |
|
61 |
1 60
|
eqeltri |
|
62 |
61
|
a1i |
|
63 |
|
1zzd |
|
64 |
2
|
funmpt2 |
|
65 |
|
id |
|
66 |
|
rabid2 |
|
67 |
1
|
stirlinglem2 |
|
68 |
|
relogcl |
|
69 |
|
elex |
|
70 |
67 68 69
|
3syl |
|
71 |
66 70
|
mprgbir |
|
72 |
2
|
dmmpt |
|
73 |
71 72
|
eqtr4i |
|
74 |
65 73
|
eleqtrdi |
|
75 |
|
fvco |
|
76 |
64 74 75
|
sylancr |
|
77 |
1
|
a1i |
|
78 |
|
simpr |
|
79 |
78
|
fveq2d |
|
80 |
78
|
oveq2d |
|
81 |
80
|
fveq2d |
|
82 |
78
|
oveq1d |
|
83 |
82 78
|
oveq12d |
|
84 |
81 83
|
oveq12d |
|
85 |
79 84
|
oveq12d |
|
86 |
|
nnnn0 |
|
87 |
|
faccl |
|
88 |
|
nncn |
|
89 |
86 87 88
|
3syl |
|
90 |
|
2cnd |
|
91 |
|
nncn |
|
92 |
90 91
|
mulcld |
|
93 |
92
|
sqrtcld |
|
94 |
20
|
a1i |
|
95 |
24
|
a1i |
|
96 |
91 94 95
|
divcld |
|
97 |
96 86
|
expcld |
|
98 |
93 97
|
mulcld |
|
99 |
29
|
a1i |
|
100 |
|
nnrp |
|
101 |
99 100
|
rpmulcld |
|
102 |
101
|
sqrtgt0d |
|
103 |
102
|
gt0ne0d |
|
104 |
|
nnne0 |
|
105 |
91 94 104 95
|
divne0d |
|
106 |
|
nnz |
|
107 |
96 105 106
|
expne0d |
|
108 |
93 97 103 107
|
mulne0d |
|
109 |
89 98 108
|
divcld |
|
110 |
77 85 65 109
|
fvmptd |
|
111 |
110 109
|
eqeltrd |
|
112 |
|
nnne0 |
|
113 |
86 87 112
|
3syl |
|
114 |
89 98 113 108
|
divne0d |
|
115 |
110 114
|
eqnetrd |
|
116 |
111 115
|
logcld |
|
117 |
|
nfcv |
|
118 |
|
nfcv |
|
119 |
|
nfmpt1 |
|
120 |
1 119
|
nfcxfr |
|
121 |
120 117
|
nffv |
|
122 |
118 121
|
nffv |
|
123 |
|
2fveq3 |
|
124 |
117 122 123 2
|
fvmptf |
|
125 |
116 124
|
mpdan |
|
126 |
125
|
fveq2d |
|
127 |
|
eflog |
|
128 |
111 115 127
|
syl2anc |
|
129 |
76 126 128
|
3eqtrd |
|
130 |
129
|
adantl |
|
131 |
6 59 62 63 130
|
climeq |
|
132 |
131
|
mptru |
|
133 |
53 132
|
sylib |
|
134 |
|
breq2 |
|
135 |
134
|
rspcev |
|
136 |
5 133 135
|
syl2anc |
|
137 |
136
|
rexlimiva |
|
138 |
3 137
|
ax-mp |
|