Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem2.1 |
|
2 |
|
nnnn0 |
|
3 |
|
faccl |
|
4 |
|
nnrp |
|
5 |
2 3 4
|
3syl |
|
6 |
|
2rp |
|
7 |
6
|
a1i |
|
8 |
|
nnrp |
|
9 |
7 8
|
rpmulcld |
|
10 |
9
|
rpsqrtcld |
|
11 |
|
epr |
|
12 |
11
|
a1i |
|
13 |
8 12
|
rpdivcld |
|
14 |
|
nnz |
|
15 |
13 14
|
rpexpcld |
|
16 |
10 15
|
rpmulcld |
|
17 |
5 16
|
rpdivcld |
|
18 |
|
fveq2 |
|
19 |
|
oveq2 |
|
20 |
19
|
fveq2d |
|
21 |
|
oveq1 |
|
22 |
|
id |
|
23 |
21 22
|
oveq12d |
|
24 |
20 23
|
oveq12d |
|
25 |
18 24
|
oveq12d |
|
26 |
25
|
cbvmptv |
|
27 |
1 26
|
eqtri |
|
28 |
27
|
a1i |
|
29 |
|
simpr |
|
30 |
29
|
fveq2d |
|
31 |
29
|
oveq2d |
|
32 |
31
|
fveq2d |
|
33 |
29
|
oveq1d |
|
34 |
33 29
|
oveq12d |
|
35 |
32 34
|
oveq12d |
|
36 |
30 35
|
oveq12d |
|
37 |
|
simpl |
|
38 |
|
simpr |
|
39 |
28 36 37 38
|
fvmptd |
|
40 |
17 39
|
mpdan |
|
41 |
40 17
|
eqeltrd |
|