| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem2.1 |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
faccl |
|
| 4 |
|
nnrp |
|
| 5 |
2 3 4
|
3syl |
|
| 6 |
|
2rp |
|
| 7 |
6
|
a1i |
|
| 8 |
|
nnrp |
|
| 9 |
7 8
|
rpmulcld |
|
| 10 |
9
|
rpsqrtcld |
|
| 11 |
|
epr |
|
| 12 |
11
|
a1i |
|
| 13 |
8 12
|
rpdivcld |
|
| 14 |
|
nnz |
|
| 15 |
13 14
|
rpexpcld |
|
| 16 |
10 15
|
rpmulcld |
|
| 17 |
5 16
|
rpdivcld |
|
| 18 |
|
fveq2 |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
oveq1 |
|
| 22 |
|
id |
|
| 23 |
21 22
|
oveq12d |
|
| 24 |
20 23
|
oveq12d |
|
| 25 |
18 24
|
oveq12d |
|
| 26 |
25
|
cbvmptv |
|
| 27 |
1 26
|
eqtri |
|
| 28 |
27
|
a1i |
|
| 29 |
|
simpr |
|
| 30 |
29
|
fveq2d |
|
| 31 |
29
|
oveq2d |
|
| 32 |
31
|
fveq2d |
|
| 33 |
29
|
oveq1d |
|
| 34 |
33 29
|
oveq12d |
|
| 35 |
32 34
|
oveq12d |
|
| 36 |
30 35
|
oveq12d |
|
| 37 |
|
simpl |
|
| 38 |
|
simpr |
|
| 39 |
28 36 37 38
|
fvmptd |
|
| 40 |
17 39
|
mpdan |
|
| 41 |
40 17
|
eqeltrd |
|