Metamath Proof Explorer


Theorem stirlinglem8

Description: If A converges to C , then F converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem8.1 n φ
stirlinglem8.2 _ n A
stirlinglem8.3 _ n D
stirlinglem8.4 D = n A 2 n
stirlinglem8.5 φ A : +
stirlinglem8.6 F = n A n 4 D n 2
stirlinglem8.7 L = n A n 4
stirlinglem8.8 M = n D n 2
stirlinglem8.9 φ n D n +
stirlinglem8.10 φ C +
stirlinglem8.11 φ A C
Assertion stirlinglem8 φ F C 2

Proof

Step Hyp Ref Expression
1 stirlinglem8.1 n φ
2 stirlinglem8.2 _ n A
3 stirlinglem8.3 _ n D
4 stirlinglem8.4 D = n A 2 n
5 stirlinglem8.5 φ A : +
6 stirlinglem8.6 F = n A n 4 D n 2
7 stirlinglem8.7 L = n A n 4
8 stirlinglem8.8 M = n D n 2
9 stirlinglem8.9 φ n D n +
10 stirlinglem8.10 φ C +
11 stirlinglem8.11 φ A C
12 nfmpt1 _ n n A n 4
13 7 12 nfcxfr _ n L
14 nfmpt1 _ n n D n 2
15 8 14 nfcxfr _ n M
16 nfmpt1 _ n n A n 4 D n 2
17 6 16 nfcxfr _ n F
18 nnuz = 1
19 1zzd φ 1
20 rrpsscn +
21 fss A : + + A :
22 5 20 21 sylancl φ A :
23 4nn0 4 0
24 23 a1i φ 4 0
25 nnex V
26 25 mptex n A n 4 V
27 7 26 eqeltri L V
28 27 a1i φ L V
29 simpr φ n n
30 5 ffvelrnda φ n A n +
31 30 rpcnd φ n A n
32 23 a1i φ n 4 0
33 31 32 expcld φ n A n 4
34 7 fvmpt2 n A n 4 L n = A n 4
35 29 33 34 syl2anc φ n L n = A n 4
36 1 2 13 18 19 22 11 24 28 35 climexp φ L C 4
37 25 mptex n A n 4 D n 2 V
38 6 37 eqeltri F V
39 38 a1i φ F V
40 22 adantr φ n A :
41 2nn 2
42 41 a1i n 2
43 id n n
44 42 43 nnmulcld n 2 n
45 44 adantl φ n 2 n
46 40 45 ffvelrnd φ n A 2 n
47 1 46 4 fmptdf φ D :
48 nfmpt1 _ n n 2 n
49 fex A : V A V
50 22 25 49 sylancl φ A V
51 1nn 1
52 2cnd φ 2
53 1cnd φ 1
54 52 53 mulcld φ 2 1
55 oveq2 n = 1 2 n = 2 1
56 eqid n 2 n = n 2 n
57 55 56 fvmptg 1 2 1 n 2 n 1 = 2 1
58 51 54 57 sylancr φ n 2 n 1 = 2 1
59 41 a1i φ 2
60 51 a1i φ 1
61 59 60 nnmulcld φ 2 1
62 58 61 eqeltrd φ n 2 n 1
63 1red n 1
64 42 nnred n 2
65 44 nnred n 2 n
66 42 nnge1d n 1 2
67 63 64 65 66 leadd2dd n 2 n + 1 2 n + 2
68 56 fvmpt2 n 2 n n 2 n n = 2 n
69 44 68 mpdan n n 2 n n = 2 n
70 69 oveq1d n n 2 n n + 1 = 2 n + 1
71 oveq2 n = k 2 n = 2 k
72 71 cbvmptv n 2 n = k 2 k
73 72 a1i n n 2 n = k 2 k
74 simpr n k = n + 1 k = n + 1
75 74 oveq2d n k = n + 1 2 k = 2 n + 1
76 peano2nn n n + 1
77 42 76 nnmulcld n 2 n + 1
78 73 75 76 77 fvmptd n n 2 n n + 1 = 2 n + 1
79 2cnd n 2
80 nncn n n
81 1cnd n 1
82 79 80 81 adddid n 2 n + 1 = 2 n + 2 1
83 79 mulid1d n 2 1 = 2
84 83 oveq2d n 2 n + 2 1 = 2 n + 2
85 78 82 84 3eqtrd n n 2 n n + 1 = 2 n + 2
86 67 70 85 3brtr4d n n 2 n n + 1 n 2 n n + 1
87 44 nnzd n 2 n
88 69 87 eqeltrd n n 2 n n
89 88 peano2zd n n 2 n n + 1
90 77 nnzd n 2 n + 1
91 78 90 eqeltrd n n 2 n n + 1
92 eluz n 2 n n + 1 n 2 n n + 1 n 2 n n + 1 n 2 n n + 1 n 2 n n + 1 n 2 n n + 1
93 89 91 92 syl2anc n n 2 n n + 1 n 2 n n + 1 n 2 n n + 1 n 2 n n + 1
94 86 93 mpbird n n 2 n n + 1 n 2 n n + 1
95 94 adantl φ n n 2 n n + 1 n 2 n n + 1
96 25 mptex n A 2 n V
97 4 96 eqeltri D V
98 97 a1i φ D V
99 4 fvmpt2 n A 2 n D n = A 2 n
100 29 46 99 syl2anc φ n D n = A 2 n
101 69 adantl φ n n 2 n n = 2 n
102 101 eqcomd φ n 2 n = n 2 n n
103 102 fveq2d φ n A 2 n = A n 2 n n
104 100 103 eqtrd φ n D n = A n 2 n n
105 1 2 3 48 18 19 50 31 11 62 95 98 104 climsuse φ D C
106 2nn0 2 0
107 106 a1i φ 2 0
108 25 mptex n D n 2 V
109 8 108 eqeltri M V
110 109 a1i φ M V
111 9 rpcnd φ n D n
112 111 sqcld φ n D n 2
113 8 fvmpt2 n D n 2 M n = D n 2
114 29 112 113 syl2anc φ n M n = D n 2
115 1 3 15 18 19 47 105 107 110 114 climexp φ M C 2
116 10 rpcnd φ C
117 10 rpne0d φ C 0
118 2z 2
119 118 a1i φ 2
120 116 117 119 expne0d φ C 2 0
121 1 33 7 fmptdf φ L :
122 121 ffvelrnda φ n L n
123 114 112 eqeltrd φ n M n
124 100 oveq1d φ n D n 2 = A 2 n 2
125 114 124 eqtrd φ n M n = A 2 n 2
126 100 9 eqeltrrd φ n A 2 n +
127 118 a1i φ n 2
128 126 127 rpexpcld φ n A 2 n 2 +
129 125 128 eqeltrd φ n M n +
130 129 rpne0d φ n M n 0
131 130 neneqd φ n ¬ M n = 0
132 0cn 0
133 elsn2g 0 M n 0 M n = 0
134 132 133 ax-mp M n 0 M n = 0
135 131 134 sylnibr φ n ¬ M n 0
136 123 135 eldifd φ n M n 0
137 32 nn0zd φ n 4
138 30 137 rpexpcld φ n A n 4 +
139 9 127 rpexpcld φ n D n 2 +
140 138 139 rpdivcld φ n A n 4 D n 2 +
141 6 fvmpt2 n A n 4 D n 2 + F n = A n 4 D n 2
142 29 140 141 syl2anc φ n F n = A n 4 D n 2
143 7 fvmpt2 n A n 4 + L n = A n 4
144 29 138 143 syl2anc φ n L n = A n 4
145 144 114 oveq12d φ n L n M n = A n 4 D n 2
146 142 145 eqtr4d φ n F n = L n M n
147 1 13 15 17 18 19 36 39 115 120 122 136 146 climdivf φ F C 4 C 2
148 2cn 2
149 2p2e4 2 + 2 = 4
150 148 148 149 mvlladdi 2 = 4 2
151 150 a1i φ 2 = 4 2
152 151 oveq2d φ C 2 = C 4 2
153 24 nn0zd φ 4
154 116 117 119 153 expsubd φ C 4 2 = C 4 C 2
155 152 154 eqtrd φ C 2 = C 4 C 2
156 147 155 breqtrrd φ F C 2