Metamath Proof Explorer


Theorem stirlinglem9

Description: ( ( BN ) - ( B( N + 1 ) ) ) is expressed as a limit of a series. This result will be used both to prove that B is decreasing and to prove that B is bounded (below). It will follow that B converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem9.1 A = n n ! 2 n n e n
stirlinglem9.2 B = n log A n
stirlinglem9.3 J = n 1 + 2 n 2 log n + 1 n 1
stirlinglem9.4 K = k 1 2 k + 1 1 2 N + 1 2 k
Assertion stirlinglem9 N seq 1 + K B N B N + 1

Proof

Step Hyp Ref Expression
1 stirlinglem9.1 A = n n ! 2 n n e n
2 stirlinglem9.2 B = n log A n
3 stirlinglem9.3 J = n 1 + 2 n 2 log n + 1 n 1
4 stirlinglem9.4 K = k 1 2 k + 1 1 2 N + 1 2 k
5 eqid k 0 2 1 2 k + 1 1 2 N + 1 2 k + 1 = k 0 2 1 2 k + 1 1 2 N + 1 2 k + 1
6 3 4 5 stirlinglem7 N seq 1 + K J N
7 1 2 3 stirlinglem4 N B N B N + 1 = J N
8 6 7 breqtrrd N seq 1 + K B N B N + 1