Step |
Hyp |
Ref |
Expression |
1 |
|
stoweid.1 |
|
2 |
|
stoweid.2 |
|
3 |
|
stoweid.3 |
|
4 |
|
stoweid.4 |
|
5 |
|
stoweid.5 |
|
6 |
|
stoweid.6 |
|
7 |
|
stoweid.7 |
|
8 |
|
stoweid.8 |
|
9 |
|
stoweid.9 |
|
10 |
|
stoweid.10 |
|
11 |
|
stoweid.11 |
|
12 |
|
stoweid.12 |
|
13 |
|
stoweid.13 |
|
14 |
|
simpr |
|
15 |
10
|
ralrimiva |
|
16 |
|
1re |
|
17 |
|
id |
|
18 |
17
|
mpteq2dv |
|
19 |
18
|
eleq1d |
|
20 |
19
|
rspccv |
|
21 |
15 16 20
|
mpisyl |
|
22 |
21
|
adantr |
|
23 |
14 22
|
stoweidlem9 |
|
24 |
|
nfv |
|
25 |
|
nfv |
|
26 |
24 25
|
nfan |
|
27 |
|
nfv |
|
28 |
2 27
|
nfan |
|
29 |
|
eqid |
|
30 |
4
|
adantr |
|
31 |
7
|
adantr |
|
32 |
8
|
3adant1r |
|
33 |
9
|
3adant1r |
|
34 |
10
|
adantlr |
|
35 |
11
|
adantlr |
|
36 |
12
|
adantr |
|
37 |
|
4re |
|
38 |
|
4pos |
|
39 |
37 38
|
elrpii |
|
40 |
39
|
a1i |
|
41 |
40
|
rpreccld |
|
42 |
13 41
|
ifcld |
|
43 |
42
|
adantr |
|
44 |
|
neqne |
|
45 |
44
|
adantl |
|
46 |
13
|
rpred |
|
47 |
|
4ne0 |
|
48 |
37 47
|
rereccli |
|
49 |
48
|
a1i |
|
50 |
46 49
|
ifcld |
|
51 |
|
3re |
|
52 |
|
3ne0 |
|
53 |
51 52
|
rereccli |
|
54 |
53
|
a1i |
|
55 |
13
|
rpxrd |
|
56 |
41
|
rpxrd |
|
57 |
|
xrmin2 |
|
58 |
55 56 57
|
syl2anc |
|
59 |
|
3lt4 |
|
60 |
|
3pos |
|
61 |
51 37 60 38
|
ltrecii |
|
62 |
59 61
|
mpbi |
|
63 |
62
|
a1i |
|
64 |
50 49 54 58 63
|
lelttrd |
|
65 |
64
|
adantr |
|
66 |
1 26 28 29 3 5 30 6 31 32 33 34 35 36 43 45 65
|
stoweidlem62 |
|
67 |
23 66
|
pm2.61dan |
|
68 |
|
nfv |
|
69 |
2 68
|
nfan |
|
70 |
|
xrmin1 |
|
71 |
55 56 70
|
syl2anc |
|
72 |
71
|
ad2antrr |
|
73 |
7
|
ad2antrr |
|
74 |
|
simplr |
|
75 |
73 74
|
sseldd |
|
76 |
3 5 6 75
|
fcnre |
|
77 |
|
simpr |
|
78 |
76 77
|
jca |
|
79 |
|
ffvelrn |
|
80 |
|
recn |
|
81 |
78 79 80
|
3syl |
|
82 |
12
|
ad2antrr |
|
83 |
3 5 6 82
|
fcnre |
|
84 |
83 77
|
jca |
|
85 |
|
ffvelrn |
|
86 |
|
recn |
|
87 |
84 85 86
|
3syl |
|
88 |
81 87
|
subcld |
|
89 |
88
|
abscld |
|
90 |
16 37 47
|
3pm3.2i |
|
91 |
|
redivcl |
|
92 |
90 91
|
mp1i |
|
93 |
46 92
|
ifcld |
|
94 |
93
|
ad2antrr |
|
95 |
46
|
ad2antrr |
|
96 |
|
ltletr |
|
97 |
89 94 95 96
|
syl3anc |
|
98 |
72 97
|
mpan2d |
|
99 |
69 98
|
ralimdaa |
|
100 |
99
|
reximdva |
|
101 |
67 100
|
mpd |
|