Metamath Proof Explorer


Theorem stoweidlem10

Description: Lemma for stoweid . This lemma is used by Lemma 1 in BrosowskiDeutsh p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Assertion stoweidlem10 A N 0 A 1 1 N A 1 A N

Proof

Step Hyp Ref Expression
1 renegcl A A
2 1 3ad2ant1 A N 0 A 1 A
3 simp2 A N 0 A 1 N 0
4 simpr A A 1 A 1
5 simpl A A 1 A
6 1red A A 1 1
7 5 6 lenegd A A 1 A 1 1 A
8 4 7 mpbid A A 1 1 A
9 8 3adant2 A N 0 A 1 1 A
10 bernneq A N 0 1 A 1 + A N 1 + A N
11 2 3 9 10 syl3anc A N 0 A 1 1 + A N 1 + A N
12 recn A A
13 12 3ad2ant1 A N 0 A 1 A
14 nn0cn N 0 N
15 14 3ad2ant2 A N 0 A 1 N
16 1cnd A N 0 A 1 1
17 mulneg1 A N A N = A N
18 17 oveq2d A N 1 + A N = 1 + A N
19 18 3adant3 A N 1 1 + A N = 1 + A N
20 simp3 A N 1 1
21 mulcl A N A N
22 21 3adant3 A N 1 A N
23 20 22 negsubd A N 1 1 + A N = 1 A N
24 mulcom A N A N = N A
25 24 oveq2d A N 1 A N = 1 N A
26 25 3adant3 A N 1 1 A N = 1 N A
27 19 23 26 3eqtrd A N 1 1 + A N = 1 N A
28 13 15 16 27 syl3anc A N 0 A 1 1 + A N = 1 N A
29 1cnd A 1
30 29 12 negsubd A 1 + A = 1 A
31 30 oveq1d A 1 + A N = 1 A N
32 31 3ad2ant1 A N 0 A 1 1 + A N = 1 A N
33 11 28 32 3brtr3d A N 0 A 1 1 N A 1 A N