Metamath Proof Explorer


Theorem stoweidlem13

Description: Lemma for stoweid . This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in BrosowskiDeutsh p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem13.1 φ E +
stoweidlem13.2 φ X
stoweidlem13.3 φ Y
stoweidlem13.4 φ j
stoweidlem13.5 φ j 4 3 E < X
stoweidlem13.6 φ X j 1 3 E
stoweidlem13.7 φ j 4 3 E < Y
stoweidlem13.8 φ Y < j + 1 3 E
Assertion stoweidlem13 φ Y X < 2 E

Proof

Step Hyp Ref Expression
1 stoweidlem13.1 φ E +
2 stoweidlem13.2 φ X
3 stoweidlem13.3 φ Y
4 stoweidlem13.4 φ j
5 stoweidlem13.5 φ j 4 3 E < X
6 stoweidlem13.6 φ X j 1 3 E
7 stoweidlem13.7 φ j 4 3 E < Y
8 stoweidlem13.8 φ Y < j + 1 3 E
9 3 2 resubcld φ Y X
10 2re 2
11 1 rpred φ E
12 remulcl 2 E 2 E
13 10 11 12 sylancr φ 2 E
14 3 recnd φ Y
15 2 recnd φ X
16 14 15 negsubdi2d φ Y X = X Y
17 2 3 resubcld φ X Y
18 1red φ 1
19 18 11 remulcld φ 1 E
20 3re 3
21 3ne0 3 0
22 20 21 rereccli 1 3
23 22 a1i φ 1 3
24 4 23 resubcld φ j 1 3
25 24 11 remulcld φ j 1 3 E
26 25 3 resubcld φ j 1 3 E Y
27 4re 4
28 27 20 21 3pm3.2i 4 3 3 0
29 redivcl 4 3 3 0 4 3
30 28 29 mp1i φ 4 3
31 4 30 resubcld φ j 4 3
32 31 11 remulcld φ j 4 3 E
33 25 32 resubcld φ j 1 3 E j 4 3 E
34 2 25 3 6 lesub1dd φ X Y j 1 3 E Y
35 32 3 25 7 ltsub2dd φ j 1 3 E Y < j 1 3 E j 4 3 E
36 17 26 33 34 35 lelttrd φ X Y < j 1 3 E j 4 3 E
37 4 recnd φ j
38 23 recnd φ 1 3
39 37 38 subcld φ j 1 3
40 30 recnd φ 4 3
41 37 40 subcld φ j 4 3
42 11 recnd φ E
43 39 41 42 subdird φ j - 1 3 - j 4 3 E = j 1 3 E j 4 3 E
44 37 38 37 40 sub4d φ j - 1 3 - j 4 3 = j - j - 1 3 4 3
45 37 37 subcld φ j j
46 45 38 40 subsub2d φ j - j - 1 3 4 3 = j j + 4 3 - 1 3
47 44 46 eqtrd φ j - 1 3 - j 4 3 = j j + 4 3 - 1 3
48 47 oveq1d φ j - 1 3 - j 4 3 E = j j + 4 3 - 1 3 E
49 43 48 eqtr3d φ j 1 3 E j 4 3 E = j j + 4 3 - 1 3 E
50 36 49 breqtrd φ X Y < j j + 4 3 - 1 3 E
51 37 subidd φ j j = 0
52 51 oveq1d φ j j + 4 3 - 1 3 = 0 + 4 3 - 1 3
53 4cn 4
54 3cn 3
55 53 54 21 divcli 4 3
56 ax-1cn 1
57 56 54 21 divcli 1 3
58 1div1e1 1 1 = 1
59 58 oveq2i 1 3 + 1 1 = 1 3 + 1
60 ax-1ne0 1 0
61 56 54 56 56 21 60 divadddivi 1 3 + 1 1 = 1 1 + 1 3 3 1
62 59 61 eqtr3i 1 3 + 1 = 1 1 + 1 3 3 1
63 54 56 addcomi 3 + 1 = 1 + 3
64 df-4 4 = 3 + 1
65 1t1e1 1 1 = 1
66 54 mulid2i 1 3 = 3
67 65 66 oveq12i 1 1 + 1 3 = 1 + 3
68 63 64 67 3eqtr4ri 1 1 + 1 3 = 4
69 68 oveq1i 1 1 + 1 3 3 1 = 4 3 1
70 3t1e3 3 1 = 3
71 70 oveq2i 4 3 1 = 4 3
72 62 69 71 3eqtri 1 3 + 1 = 4 3
73 55 57 56 72 subaddrii 4 3 1 3 = 1
74 73 oveq2i 0 + 4 3 - 1 3 = 0 + 1
75 1e0p1 1 = 0 + 1
76 74 75 eqtr4i 0 + 4 3 - 1 3 = 1
77 52 76 eqtrdi φ j j + 4 3 - 1 3 = 1
78 77 oveq1d φ j j + 4 3 - 1 3 E = 1 E
79 50 78 breqtrd φ X Y < 1 E
80 1lt2 1 < 2
81 10 a1i φ 2
82 18 81 1 ltmul1d φ 1 < 2 1 E < 2 E
83 80 82 mpbii φ 1 E < 2 E
84 17 19 13 79 83 lttrd φ X Y < 2 E
85 16 84 eqbrtrd φ Y X < 2 E
86 9 13 85 ltnegcon1d φ 2 E < Y X
87 5re 5
88 87 a1i φ 5
89 20 a1i φ 3
90 21 a1i φ 3 0
91 88 89 90 redivcld φ 5 3
92 91 11 remulcld φ 5 3 E
93 2 renegcld φ X
94 4 23 readdcld φ j + 1 3
95 94 11 remulcld φ j + 1 3 E
96 32 renegcld φ j 4 3 E
97 32 2 ltnegd φ j 4 3 E < X X < j 4 3 E
98 5 97 mpbid φ X < j 4 3 E
99 3 93 95 96 8 98 lt2addd φ Y + X < j + 1 3 E + j 4 3 E
100 14 15 negsubd φ Y + X = Y X
101 37 38 42 adddird φ j + 1 3 E = j E + 1 3 E
102 37 40 negsubd φ j + 4 3 = j 4 3
103 102 eqcomd φ j 4 3 = j + 4 3
104 103 oveq1d φ j 4 3 E = j + 4 3 E
105 40 negcld φ 4 3
106 37 105 42 adddird φ j + 4 3 E = j E + 4 3 E
107 40 42 mulneg1d φ 4 3 E = 4 3 E
108 107 oveq2d φ j E + 4 3 E = j E + 4 3 E
109 104 106 108 3eqtrd φ j 4 3 E = j E + 4 3 E
110 109 negeqd φ j 4 3 E = j E + 4 3 E
111 37 42 mulcld φ j E
112 40 42 mulcld φ 4 3 E
113 112 negcld φ 4 3 E
114 111 113 negdid φ j E + 4 3 E = - j E + 4 3 E
115 112 negnegd φ 4 3 E = 4 3 E
116 115 oveq2d φ - j E + 4 3 E = - j E + 4 3 E
117 110 114 116 3eqtrd φ j 4 3 E = - j E + 4 3 E
118 101 117 oveq12d φ j + 1 3 E + j 4 3 E = j E + 1 3 E + j E + 4 3 E
119 38 42 mulcld φ 1 3 E
120 111 negcld φ j E
121 111 119 120 112 add4d φ j E + 1 3 E + j E + 4 3 E = j E + j E + 1 3 E + 4 3 E
122 111 negidd φ j E + j E = 0
123 122 oveq1d φ j E + j E + 1 3 E + 4 3 E = 0 + 1 3 E + 4 3 E
124 119 112 addcld φ 1 3 E + 4 3 E
125 124 addid2d φ 0 + 1 3 E + 4 3 E = 1 3 E + 4 3 E
126 121 123 125 3eqtrd φ j E + 1 3 E + j E + 4 3 E = 1 3 E + 4 3 E
127 38 40 42 adddird φ 1 3 + 4 3 E = 1 3 E + 4 3 E
128 89 recnd φ 3
129 38 40 addcld φ 1 3 + 4 3
130 128 38 40 adddid φ 3 1 3 + 4 3 = 3 1 3 + 3 4 3
131 56 53 addcomi 1 + 4 = 4 + 1
132 56 54 21 divcan2i 3 1 3 = 1
133 53 54 21 divcan2i 3 4 3 = 4
134 132 133 oveq12i 3 1 3 + 3 4 3 = 1 + 4
135 df-5 5 = 4 + 1
136 131 134 135 3eqtr4i 3 1 3 + 3 4 3 = 5
137 130 136 eqtrdi φ 3 1 3 + 4 3 = 5
138 128 129 90 137 mvllmuld φ 1 3 + 4 3 = 5 3
139 138 oveq1d φ 1 3 + 4 3 E = 5 3 E
140 126 127 139 3eqtr2d φ j E + 1 3 E + j E + 4 3 E = 5 3 E
141 118 140 eqtrd φ j + 1 3 E + j 4 3 E = 5 3 E
142 99 100 141 3brtr3d φ Y X < 5 3 E
143 5lt6 5 < 6
144 3t2e6 3 2 = 6
145 143 144 breqtrri 5 < 3 2
146 3pos 0 < 3
147 20 146 pm3.2i 3 0 < 3
148 ltdivmul 5 2 3 0 < 3 5 3 < 2 5 < 3 2
149 87 10 147 148 mp3an 5 3 < 2 5 < 3 2
150 145 149 mpbir 5 3 < 2
151 150 a1i φ 5 3 < 2
152 91 81 1 151 ltmul1dd φ 5 3 E < 2 E
153 9 92 13 142 152 lttrd φ Y X < 2 E
154 9 13 absltd φ Y X < 2 E 2 E < Y X Y X < 2 E
155 86 153 154 mpbir2and φ Y X < 2 E