Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem16.1 |
|
2 |
|
stoweidlem16.2 |
|
3 |
|
stoweidlem16.3 |
|
4 |
|
stoweidlem16.4 |
|
5 |
|
stoweidlem16.5 |
|
6 |
|
simp1 |
|
7 |
|
fveq1 |
|
8 |
7
|
breq2d |
|
9 |
7
|
breq1d |
|
10 |
8 9
|
anbi12d |
|
11 |
10
|
ralbidv |
|
12 |
11 2
|
elrab2 |
|
13 |
12
|
simplbi |
|
14 |
13
|
3ad2ant2 |
|
15 |
|
fveq1 |
|
16 |
15
|
breq2d |
|
17 |
15
|
breq1d |
|
18 |
16 17
|
anbi12d |
|
19 |
18
|
ralbidv |
|
20 |
19 2
|
elrab2 |
|
21 |
20
|
simplbi |
|
22 |
21
|
3ad2ant3 |
|
23 |
6 14 22 5
|
syl3anc |
|
24 |
3 23
|
eqeltrid |
|
25 |
|
nfra1 |
|
26 |
|
nfcv |
|
27 |
25 26
|
nfrabw |
|
28 |
2 27
|
nfcxfr |
|
29 |
28
|
nfcri |
|
30 |
28
|
nfcri |
|
31 |
1 29 30
|
nf3an |
|
32 |
6 14
|
jca |
|
33 |
32
|
adantr |
|
34 |
33 4
|
syl |
|
35 |
|
simpr |
|
36 |
34 35
|
ffvelrnd |
|
37 |
6 22
|
jca |
|
38 |
|
eleq1w |
|
39 |
38
|
anbi2d |
|
40 |
|
feq1 |
|
41 |
39 40
|
imbi12d |
|
42 |
41 4
|
vtoclg |
|
43 |
22 37 42
|
sylc |
|
44 |
43
|
ffvelrnda |
|
45 |
12
|
simprbi |
|
46 |
45
|
3ad2ant2 |
|
47 |
46
|
r19.21bi |
|
48 |
47
|
simpld |
|
49 |
20
|
simprbi |
|
50 |
49
|
3ad2ant3 |
|
51 |
50
|
r19.21bi |
|
52 |
51
|
simpld |
|
53 |
36 44 48 52
|
mulge0d |
|
54 |
36 44
|
remulcld |
|
55 |
3
|
fvmpt2 |
|
56 |
35 54 55
|
syl2anc |
|
57 |
53 56
|
breqtrrd |
|
58 |
|
1red |
|
59 |
47
|
simprd |
|
60 |
51
|
simprd |
|
61 |
36 58 44 58 48 52 59 60
|
lemul12ad |
|
62 |
|
1t1e1 |
|
63 |
61 62
|
breqtrdi |
|
64 |
56 63
|
eqbrtrd |
|
65 |
57 64
|
jca |
|
66 |
65
|
ex |
|
67 |
31 66
|
ralrimi |
|
68 |
|
nfmpt1 |
|
69 |
3 68
|
nfcxfr |
|
70 |
69
|
nfeq2 |
|
71 |
|
fveq1 |
|
72 |
71
|
breq2d |
|
73 |
71
|
breq1d |
|
74 |
72 73
|
anbi12d |
|
75 |
70 74
|
ralbid |
|
76 |
75
|
elrab |
|
77 |
24 67 76
|
sylanbrc |
|
78 |
77 2
|
eleqtrrdi |
|