Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem19.1 |
|
2 |
|
stoweidlem19.2 |
|
3 |
|
stoweidlem19.3 |
|
4 |
|
stoweidlem19.4 |
|
5 |
|
stoweidlem19.5 |
|
6 |
|
stoweidlem19.6 |
|
7 |
|
stoweidlem19.7 |
|
8 |
|
oveq2 |
|
9 |
8
|
mpteq2dv |
|
10 |
9
|
eleq1d |
|
11 |
10
|
imbi2d |
|
12 |
|
oveq2 |
|
13 |
12
|
mpteq2dv |
|
14 |
13
|
eleq1d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq2 |
|
17 |
16
|
mpteq2dv |
|
18 |
17
|
eleq1d |
|
19 |
18
|
imbi2d |
|
20 |
|
oveq2 |
|
21 |
20
|
mpteq2dv |
|
22 |
21
|
eleq1d |
|
23 |
22
|
imbi2d |
|
24 |
6
|
ancli |
|
25 |
|
eleq1 |
|
26 |
25
|
anbi2d |
|
27 |
|
feq1 |
|
28 |
26 27
|
imbi12d |
|
29 |
28 3
|
vtoclg |
|
30 |
6 24 29
|
sylc |
|
31 |
30
|
ffvelrnda |
|
32 |
|
recn |
|
33 |
|
exp0 |
|
34 |
31 32 33
|
3syl |
|
35 |
34
|
eqcomd |
|
36 |
2 35
|
mpteq2da |
|
37 |
|
1re |
|
38 |
5
|
stoweidlem4 |
|
39 |
37 38
|
mpan2 |
|
40 |
36 39
|
eqeltrrd |
|
41 |
|
simpr |
|
42 |
|
simpll |
|
43 |
|
simplr |
|
44 |
41 43
|
mpd |
|
45 |
|
nfv |
|
46 |
|
nfmpt1 |
|
47 |
46
|
nfel1 |
|
48 |
2 45 47
|
nf3an |
|
49 |
|
simpl1 |
|
50 |
|
simpr |
|
51 |
31
|
recnd |
|
52 |
49 50 51
|
syl2anc |
|
53 |
|
simpl2 |
|
54 |
52 53
|
expp1d |
|
55 |
48 54
|
mpteq2da |
|
56 |
31
|
3adant2 |
|
57 |
|
simp2 |
|
58 |
56 57
|
reexpcld |
|
59 |
49 53 50 58
|
syl3anc |
|
60 |
|
eqid |
|
61 |
60
|
fvmpt2 |
|
62 |
61
|
eqcomd |
|
63 |
50 59 62
|
syl2anc |
|
64 |
63
|
oveq1d |
|
65 |
48 64
|
mpteq2da |
|
66 |
6
|
adantr |
|
67 |
46
|
nfeq2 |
|
68 |
1
|
nfeq2 |
|
69 |
67 68 4
|
stoweidlem6 |
|
70 |
66 69
|
mpd3an3 |
|
71 |
70
|
3adant2 |
|
72 |
65 71
|
eqeltrd |
|
73 |
55 72
|
eqeltrd |
|
74 |
41 42 44 73
|
syl3anc |
|
75 |
74
|
exp31 |
|
76 |
11 15 19 23 40 75
|
nn0ind |
|
77 |
7 76
|
mpcom |
|