Metamath Proof Explorer


Theorem stoweidlem19

Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem19.1 _ t F
stoweidlem19.2 t φ
stoweidlem19.3 φ f A f : T
stoweidlem19.4 φ f A g A t T f t g t A
stoweidlem19.5 φ x t T x A
stoweidlem19.6 φ F A
stoweidlem19.7 φ N 0
Assertion stoweidlem19 φ t T F t N A

Proof

Step Hyp Ref Expression
1 stoweidlem19.1 _ t F
2 stoweidlem19.2 t φ
3 stoweidlem19.3 φ f A f : T
4 stoweidlem19.4 φ f A g A t T f t g t A
5 stoweidlem19.5 φ x t T x A
6 stoweidlem19.6 φ F A
7 stoweidlem19.7 φ N 0
8 oveq2 n = 0 F t n = F t 0
9 8 mpteq2dv n = 0 t T F t n = t T F t 0
10 9 eleq1d n = 0 t T F t n A t T F t 0 A
11 10 imbi2d n = 0 φ t T F t n A φ t T F t 0 A
12 oveq2 n = m F t n = F t m
13 12 mpteq2dv n = m t T F t n = t T F t m
14 13 eleq1d n = m t T F t n A t T F t m A
15 14 imbi2d n = m φ t T F t n A φ t T F t m A
16 oveq2 n = m + 1 F t n = F t m + 1
17 16 mpteq2dv n = m + 1 t T F t n = t T F t m + 1
18 17 eleq1d n = m + 1 t T F t n A t T F t m + 1 A
19 18 imbi2d n = m + 1 φ t T F t n A φ t T F t m + 1 A
20 oveq2 n = N F t n = F t N
21 20 mpteq2dv n = N t T F t n = t T F t N
22 21 eleq1d n = N t T F t n A t T F t N A
23 22 imbi2d n = N φ t T F t n A φ t T F t N A
24 6 ancli φ φ F A
25 eleq1 f = F f A F A
26 25 anbi2d f = F φ f A φ F A
27 feq1 f = F f : T F : T
28 26 27 imbi12d f = F φ f A f : T φ F A F : T
29 28 3 vtoclg F A φ F A F : T
30 6 24 29 sylc φ F : T
31 30 ffvelrnda φ t T F t
32 recn F t F t
33 exp0 F t F t 0 = 1
34 31 32 33 3syl φ t T F t 0 = 1
35 34 eqcomd φ t T 1 = F t 0
36 2 35 mpteq2da φ t T 1 = t T F t 0
37 1re 1
38 5 stoweidlem4 φ 1 t T 1 A
39 37 38 mpan2 φ t T 1 A
40 36 39 eqeltrrd φ t T F t 0 A
41 simpr m 0 φ t T F t m A φ φ
42 simpll m 0 φ t T F t m A φ m 0
43 simplr m 0 φ t T F t m A φ φ t T F t m A
44 41 43 mpd m 0 φ t T F t m A φ t T F t m A
45 nfv t m 0
46 nfmpt1 _ t t T F t m
47 46 nfel1 t t T F t m A
48 2 45 47 nf3an t φ m 0 t T F t m A
49 simpl1 φ m 0 t T F t m A t T φ
50 simpr φ m 0 t T F t m A t T t T
51 31 recnd φ t T F t
52 49 50 51 syl2anc φ m 0 t T F t m A t T F t
53 simpl2 φ m 0 t T F t m A t T m 0
54 52 53 expp1d φ m 0 t T F t m A t T F t m + 1 = F t m F t
55 48 54 mpteq2da φ m 0 t T F t m A t T F t m + 1 = t T F t m F t
56 31 3adant2 φ m 0 t T F t
57 simp2 φ m 0 t T m 0
58 56 57 reexpcld φ m 0 t T F t m
59 49 53 50 58 syl3anc φ m 0 t T F t m A t T F t m
60 eqid t T F t m = t T F t m
61 60 fvmpt2 t T F t m t T F t m t = F t m
62 61 eqcomd t T F t m F t m = t T F t m t
63 50 59 62 syl2anc φ m 0 t T F t m A t T F t m = t T F t m t
64 63 oveq1d φ m 0 t T F t m A t T F t m F t = t T F t m t F t
65 48 64 mpteq2da φ m 0 t T F t m A t T F t m F t = t T t T F t m t F t
66 6 adantr φ t T F t m A F A
67 46 nfeq2 t f = t T F t m
68 1 nfeq2 t g = F
69 67 68 4 stoweidlem6 φ t T F t m A F A t T t T F t m t F t A
70 66 69 mpd3an3 φ t T F t m A t T t T F t m t F t A
71 70 3adant2 φ m 0 t T F t m A t T t T F t m t F t A
72 65 71 eqeltrd φ m 0 t T F t m A t T F t m F t A
73 55 72 eqeltrd φ m 0 t T F t m A t T F t m + 1 A
74 41 42 44 73 syl3anc m 0 φ t T F t m A φ t T F t m + 1 A
75 74 exp31 m 0 φ t T F t m A φ t T F t m + 1 A
76 11 15 19 23 40 75 nn0ind N 0 φ t T F t N A
77 7 76 mpcom φ t T F t N A