Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem20.1 |
|
2 |
|
stoweidlem20.2 |
|
3 |
|
stoweidlem20.3 |
|
4 |
|
stoweidlem20.4 |
|
5 |
|
stoweidlem20.5 |
|
6 |
|
stoweidlem20.6 |
|
7 |
3
|
nnred |
|
8 |
7
|
leidd |
|
9 |
8
|
ancli |
|
10 |
|
eleq1 |
|
11 |
|
breq1 |
|
12 |
11
|
anbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
sumeq1d |
|
15 |
14
|
mpteq2dv |
|
16 |
15
|
eleq1d |
|
17 |
12 16
|
imbi12d |
|
18 |
10 17
|
imbi12d |
|
19 |
|
breq1 |
|
20 |
19
|
anbi2d |
|
21 |
|
oveq2 |
|
22 |
21
|
sumeq1d |
|
23 |
22
|
mpteq2dv |
|
24 |
23
|
eleq1d |
|
25 |
20 24
|
imbi12d |
|
26 |
|
breq1 |
|
27 |
26
|
anbi2d |
|
28 |
|
oveq2 |
|
29 |
28
|
sumeq1d |
|
30 |
29
|
mpteq2dv |
|
31 |
30
|
eleq1d |
|
32 |
27 31
|
imbi12d |
|
33 |
|
breq1 |
|
34 |
33
|
anbi2d |
|
35 |
|
oveq2 |
|
36 |
35
|
sumeq1d |
|
37 |
36
|
mpteq2dv |
|
38 |
37
|
eleq1d |
|
39 |
34 38
|
imbi12d |
|
40 |
|
breq1 |
|
41 |
40
|
anbi2d |
|
42 |
|
oveq2 |
|
43 |
42
|
sumeq1d |
|
44 |
43
|
mpteq2dv |
|
45 |
44
|
eleq1d |
|
46 |
41 45
|
imbi12d |
|
47 |
|
1z |
|
48 |
|
nnuz |
|
49 |
3 48
|
eleqtrdi |
|
50 |
|
eluzfz1 |
|
51 |
49 50
|
syl |
|
52 |
4 51
|
ffvelrnd |
|
53 |
52
|
ancli |
|
54 |
|
eleq1 |
|
55 |
54
|
anbi2d |
|
56 |
|
feq1 |
|
57 |
55 56
|
imbi12d |
|
58 |
57 6
|
vtoclg |
|
59 |
52 53 58
|
sylc |
|
60 |
59
|
ffvelrnda |
|
61 |
60
|
recnd |
|
62 |
|
fveq2 |
|
63 |
62
|
fveq1d |
|
64 |
63
|
fsum1 |
|
65 |
47 61 64
|
sylancr |
|
66 |
1 65
|
mpteq2da |
|
67 |
59
|
feqmptd |
|
68 |
66 67
|
eqtr4d |
|
69 |
68 52
|
eqeltrd |
|
70 |
69
|
adantr |
|
71 |
|
simprl |
|
72 |
|
simpll |
|
73 |
|
simprr |
|
74 |
|
simp1 |
|
75 |
|
nnre |
|
76 |
75
|
3ad2ant2 |
|
77 |
|
1red |
|
78 |
76 77
|
readdcld |
|
79 |
3
|
3ad2ant1 |
|
80 |
79
|
nnred |
|
81 |
76
|
lep1d |
|
82 |
|
simp3 |
|
83 |
76 78 80 81 82
|
letrd |
|
84 |
74 83
|
jca |
|
85 |
71 72 73 84
|
syl3anc |
|
86 |
|
simplr |
|
87 |
85 86
|
mpd |
|
88 |
|
nfv |
|
89 |
|
nfv |
|
90 |
1 88 89
|
nf3an |
|
91 |
|
simpl2 |
|
92 |
91 48
|
eleqtrdi |
|
93 |
|
simpll1 |
|
94 |
|
1zzd |
|
95 |
3
|
nnzd |
|
96 |
95
|
3ad2ant1 |
|
97 |
96
|
ad2antrr |
|
98 |
|
elfzelz |
|
99 |
98
|
adantl |
|
100 |
|
elfzle1 |
|
101 |
100
|
adantl |
|
102 |
98
|
zred |
|
103 |
102
|
adantl |
|
104 |
78
|
ad2antrr |
|
105 |
80
|
ad2antrr |
|
106 |
|
elfzle2 |
|
107 |
106
|
adantl |
|
108 |
|
simpll3 |
|
109 |
103 104 105 107 108
|
letrd |
|
110 |
94 97 99 101 109
|
elfzd |
|
111 |
|
simplr |
|
112 |
4
|
ffvelrnda |
|
113 |
112
|
3adant3 |
|
114 |
|
simp1 |
|
115 |
114 113
|
jca |
|
116 |
|
eleq1 |
|
117 |
116
|
anbi2d |
|
118 |
|
feq1 |
|
119 |
117 118
|
imbi12d |
|
120 |
119 6
|
vtoclg |
|
121 |
113 115 120
|
sylc |
|
122 |
|
simp3 |
|
123 |
121 122
|
ffvelrnd |
|
124 |
123
|
recnd |
|
125 |
93 110 111 124
|
syl3anc |
|
126 |
|
fveq2 |
|
127 |
126
|
fveq1d |
|
128 |
92 125 127
|
fsump1 |
|
129 |
|
simpr |
|
130 |
|
fzfid |
|
131 |
|
simpll1 |
|
132 |
|
1zzd |
|
133 |
96
|
ad2antrr |
|
134 |
|
elfzelz |
|
135 |
134
|
adantl |
|
136 |
|
elfzle1 |
|
137 |
136
|
adantl |
|
138 |
134
|
zred |
|
139 |
138
|
adantl |
|
140 |
78
|
adantr |
|
141 |
80
|
adantr |
|
142 |
76
|
adantr |
|
143 |
|
elfzle2 |
|
144 |
143
|
adantl |
|
145 |
|
letrp1 |
|
146 |
139 142 144 145
|
syl3anc |
|
147 |
|
simpl3 |
|
148 |
139 140 141 146 147
|
letrd |
|
149 |
148
|
adantlr |
|
150 |
132 133 135 137 149
|
elfzd |
|
151 |
|
simplr |
|
152 |
131 150 151 123
|
syl3anc |
|
153 |
130 152
|
fsumrecl |
|
154 |
|
eqid |
|
155 |
154
|
fvmpt2 |
|
156 |
129 153 155
|
syl2anc |
|
157 |
156
|
oveq1d |
|
158 |
128 157
|
eqtr4d |
|
159 |
90 158
|
mpteq2da |
|
160 |
159
|
adantr |
|
161 |
|
1zzd |
|
162 |
|
peano2nn |
|
163 |
162
|
nnzd |
|
164 |
163
|
3ad2ant2 |
|
165 |
162
|
nnge1d |
|
166 |
165
|
3ad2ant2 |
|
167 |
161 96 164 166 82
|
elfzd |
|
168 |
4
|
ffvelrnda |
|
169 |
74 167 168
|
syl2anc |
|
170 |
|
eleq1 |
|
171 |
170
|
anbi2d |
|
172 |
|
feq1 |
|
173 |
171 172
|
imbi12d |
|
174 |
173 6
|
vtoclg |
|
175 |
174
|
anabsi7 |
|
176 |
74 169 175
|
syl2anc |
|
177 |
176
|
ffvelrnda |
|
178 |
|
eqid |
|
179 |
178
|
fvmpt2 |
|
180 |
129 177 179
|
syl2anc |
|
181 |
180
|
oveq2d |
|
182 |
90 181
|
mpteq2da |
|
183 |
182
|
adantr |
|
184 |
|
simpl1 |
|
185 |
|
simpr |
|
186 |
167
|
adantr |
|
187 |
175
|
feqmptd |
|
188 |
168 187
|
syldan |
|
189 |
188 168
|
eqeltrrd |
|
190 |
184 186 189
|
syl2anc |
|
191 |
|
nfmpt1 |
|
192 |
|
nfmpt1 |
|
193 |
5 191 192
|
stoweidlem8 |
|
194 |
184 185 190 193
|
syl3anc |
|
195 |
183 194
|
eqeltrrd |
|
196 |
160 195
|
eqeltrd |
|
197 |
71 72 73 87 196
|
syl31anc |
|
198 |
197
|
exp31 |
|
199 |
25 32 39 46 70 198
|
nnind |
|
200 |
18 199
|
vtoclg |
|
201 |
3 3 9 200
|
syl3c |
|
202 |
2 201
|
eqeltrid |
|