Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem21.1 |
|
2 |
|
stoweidlem21.2 |
|
3 |
|
stoweidlem21.3 |
|
4 |
|
stoweidlem21.4 |
|
5 |
|
stoweidlem21.5 |
|
6 |
|
stoweidlem21.6 |
|
7 |
|
stoweidlem21.7 |
|
8 |
|
stoweidlem21.8 |
|
9 |
|
stoweidlem21.9 |
|
10 |
|
stoweidlem21.10 |
|
11 |
|
stoweidlem21.11 |
|
12 |
|
stoweidlem21.12 |
|
13 |
|
fvconst2g |
|
14 |
7 13
|
sylan |
|
15 |
14
|
eqcomd |
|
16 |
15
|
oveq2d |
|
17 |
4 16
|
mpteq2da |
|
18 |
5 17
|
syl5eq |
|
19 |
|
fconstmpt |
|
20 |
|
nfcv |
|
21 |
|
eqidd |
|
22 |
3 20 21
|
cbvmpt |
|
23 |
19 22
|
eqtri |
|
24 |
3
|
nfeq2 |
|
25 |
|
simpl |
|
26 |
24 25
|
mpteq2da |
|
27 |
26
|
eleq1d |
|
28 |
27
|
imbi2d |
|
29 |
9
|
expcom |
|
30 |
28 29
|
vtoclga |
|
31 |
7 30
|
mpcom |
|
32 |
23 31
|
eqeltrid |
|
33 |
|
nfcv |
|
34 |
3
|
nfsn |
|
35 |
33 34
|
nfxp |
|
36 |
8 2 35
|
stoweidlem8 |
|
37 |
11 32 36
|
mpd3an23 |
|
38 |
18 37
|
eqeltrd |
|
39 |
|
simpr |
|
40 |
|
feq1 |
|
41 |
40
|
rspccva |
|
42 |
10 11 41
|
syl2anc |
|
43 |
42
|
ffvelrnda |
|
44 |
7
|
adantr |
|
45 |
43 44
|
readdcld |
|
46 |
5
|
fvmpt2 |
|
47 |
39 45 46
|
syl2anc |
|
48 |
47
|
oveq1d |
|
49 |
43
|
recnd |
|
50 |
6
|
ffvelrnda |
|
51 |
50
|
recnd |
|
52 |
7
|
recnd |
|
53 |
52
|
adantr |
|
54 |
49 51 53
|
subsub3d |
|
55 |
48 54
|
eqtr4d |
|
56 |
55
|
fveq2d |
|
57 |
12
|
r19.21bi |
|
58 |
56 57
|
eqbrtrd |
|
59 |
58
|
ex |
|
60 |
4 59
|
ralrimi |
|
61 |
1
|
nfeq2 |
|
62 |
|
fveq1 |
|
63 |
62
|
oveq1d |
|
64 |
63
|
fveq2d |
|
65 |
64
|
breq1d |
|
66 |
61 65
|
ralbid |
|
67 |
66
|
rspcev |
|
68 |
38 60 67
|
syl2anc |
|