Metamath Proof Explorer


Theorem stoweidlem21

Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem21.1 _ t G
stoweidlem21.2 _ t H
stoweidlem21.3 _ t S
stoweidlem21.4 t φ
stoweidlem21.5 G = t T H t + S
stoweidlem21.6 φ F : T
stoweidlem21.7 φ S
stoweidlem21.8 φ f A g A t T f t + g t A
stoweidlem21.9 φ x t T x A
stoweidlem21.10 φ f A f : T
stoweidlem21.11 φ H A
stoweidlem21.12 φ t T H t F t S < E
Assertion stoweidlem21 φ f A t T f t F t < E

Proof

Step Hyp Ref Expression
1 stoweidlem21.1 _ t G
2 stoweidlem21.2 _ t H
3 stoweidlem21.3 _ t S
4 stoweidlem21.4 t φ
5 stoweidlem21.5 G = t T H t + S
6 stoweidlem21.6 φ F : T
7 stoweidlem21.7 φ S
8 stoweidlem21.8 φ f A g A t T f t + g t A
9 stoweidlem21.9 φ x t T x A
10 stoweidlem21.10 φ f A f : T
11 stoweidlem21.11 φ H A
12 stoweidlem21.12 φ t T H t F t S < E
13 fvconst2g S t T T × S t = S
14 7 13 sylan φ t T T × S t = S
15 14 eqcomd φ t T S = T × S t
16 15 oveq2d φ t T H t + S = H t + T × S t
17 4 16 mpteq2da φ t T H t + S = t T H t + T × S t
18 5 17 syl5eq φ G = t T H t + T × S t
19 fconstmpt T × S = s T S
20 nfcv _ s S
21 eqidd s = t S = S
22 3 20 21 cbvmpt s T S = t T S
23 19 22 eqtri T × S = t T S
24 3 nfeq2 t x = S
25 simpl x = S t T x = S
26 24 25 mpteq2da x = S t T x = t T S
27 26 eleq1d x = S t T x A t T S A
28 27 imbi2d x = S φ t T x A φ t T S A
29 9 expcom x φ t T x A
30 28 29 vtoclga S φ t T S A
31 7 30 mpcom φ t T S A
32 23 31 eqeltrid φ T × S A
33 nfcv _ t T
34 3 nfsn _ t S
35 33 34 nfxp _ t T × S
36 8 2 35 stoweidlem8 φ H A T × S A t T H t + T × S t A
37 11 32 36 mpd3an23 φ t T H t + T × S t A
38 18 37 eqeltrd φ G A
39 simpr φ t T t T
40 feq1 f = H f : T H : T
41 40 rspccva f A f : T H A H : T
42 10 11 41 syl2anc φ H : T
43 42 ffvelrnda φ t T H t
44 7 adantr φ t T S
45 43 44 readdcld φ t T H t + S
46 5 fvmpt2 t T H t + S G t = H t + S
47 39 45 46 syl2anc φ t T G t = H t + S
48 47 oveq1d φ t T G t F t = H t + S - F t
49 43 recnd φ t T H t
50 6 ffvelrnda φ t T F t
51 50 recnd φ t T F t
52 7 recnd φ S
53 52 adantr φ t T S
54 49 51 53 subsub3d φ t T H t F t S = H t + S - F t
55 48 54 eqtr4d φ t T G t F t = H t F t S
56 55 fveq2d φ t T G t F t = H t F t S
57 12 r19.21bi φ t T H t F t S < E
58 56 57 eqbrtrd φ t T G t F t < E
59 58 ex φ t T G t F t < E
60 4 59 ralrimi φ t T G t F t < E
61 1 nfeq2 t f = G
62 fveq1 f = G f t = G t
63 62 oveq1d f = G f t F t = G t F t
64 63 fveq2d f = G f t F t = G t F t
65 64 breq1d f = G f t F t < E G t F t < E
66 61 65 ralbid f = G t T f t F t < E t T G t F t < E
67 66 rspcev G A t T G t F t < E f A t T f t F t < E
68 38 60 67 syl2anc φ f A t T f t F t < E