Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem23.1 |
|
2 |
|
stoweidlem23.2 |
|
3 |
|
stoweidlem23.3 |
|
4 |
|
stoweidlem23.4 |
|
5 |
|
stoweidlem23.5 |
|
6 |
|
stoweidlem23.6 |
|
7 |
|
stoweidlem23.7 |
|
8 |
|
stoweidlem23.8 |
|
9 |
|
stoweidlem23.9 |
|
10 |
|
stoweidlem23.10 |
|
11 |
9
|
ancli |
|
12 |
|
eleq1 |
|
13 |
12
|
anbi2d |
|
14 |
|
feq1 |
|
15 |
13 14
|
imbi12d |
|
16 |
15 4
|
vtoclg |
|
17 |
9 11 16
|
sylc |
|
18 |
17
|
ffvelrnda |
|
19 |
18
|
recnd |
|
20 |
17 8
|
ffvelrnd |
|
21 |
20
|
adantr |
|
22 |
21
|
recnd |
|
23 |
19 22
|
negsubd |
|
24 |
1 23
|
mpteq2da |
|
25 |
|
simpr |
|
26 |
20
|
renegcld |
|
27 |
26
|
adantr |
|
28 |
|
eqid |
|
29 |
28
|
fvmpt2 |
|
30 |
25 27 29
|
syl2anc |
|
31 |
30
|
oveq2d |
|
32 |
1 31
|
mpteq2da |
|
33 |
26
|
ancli |
|
34 |
|
eleq1 |
|
35 |
34
|
anbi2d |
|
36 |
|
nfcv |
|
37 |
2 36
|
nffv |
|
38 |
37
|
nfneg |
|
39 |
38
|
nfeq2 |
|
40 |
|
simpl |
|
41 |
39 40
|
mpteq2da |
|
42 |
41
|
eleq1d |
|
43 |
35 42
|
imbi12d |
|
44 |
43 6
|
vtoclg |
|
45 |
26 33 44
|
sylc |
|
46 |
|
nfmpt1 |
|
47 |
5 2 46
|
stoweidlem8 |
|
48 |
9 45 47
|
mpd3an23 |
|
49 |
32 48
|
eqeltrrd |
|
50 |
24 49
|
eqeltrrd |
|
51 |
3 50
|
eqeltrid |
|
52 |
17 7
|
ffvelrnd |
|
53 |
52
|
recnd |
|
54 |
20
|
recnd |
|
55 |
53 54 10
|
subne0d |
|
56 |
52 20
|
resubcld |
|
57 |
|
nfcv |
|
58 |
2 57
|
nffv |
|
59 |
|
nfcv |
|
60 |
58 59 37
|
nfov |
|
61 |
|
fveq2 |
|
62 |
61
|
oveq1d |
|
63 |
57 60 62 3
|
fvmptf |
|
64 |
7 56 63
|
syl2anc |
|
65 |
20 20
|
resubcld |
|
66 |
37 59 37
|
nfov |
|
67 |
|
fveq2 |
|
68 |
67
|
oveq1d |
|
69 |
36 66 68 3
|
fvmptf |
|
70 |
8 65 69
|
syl2anc |
|
71 |
54
|
subidd |
|
72 |
70 71
|
eqtrd |
|
73 |
55 64 72
|
3netr4d |
|
74 |
51 73 72
|
3jca |
|