Metamath Proof Explorer


Theorem stoweidlem23

Description: This lemma is used to prove the existence of a function p_t as in the beginning of Lemma 1 BrosowskiDeutsh p. 90: for all t in T - U, there exists a function p in the subalgebra, such that p_t ( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem23.1 t φ
stoweidlem23.2 _ t G
stoweidlem23.3 H = t T G t G Z
stoweidlem23.4 φ f A f : T
stoweidlem23.5 φ f A g A t T f t + g t A
stoweidlem23.6 φ x t T x A
stoweidlem23.7 φ S T
stoweidlem23.8 φ Z T
stoweidlem23.9 φ G A
stoweidlem23.10 φ G S G Z
Assertion stoweidlem23 φ H A H S H Z H Z = 0

Proof

Step Hyp Ref Expression
1 stoweidlem23.1 t φ
2 stoweidlem23.2 _ t G
3 stoweidlem23.3 H = t T G t G Z
4 stoweidlem23.4 φ f A f : T
5 stoweidlem23.5 φ f A g A t T f t + g t A
6 stoweidlem23.6 φ x t T x A
7 stoweidlem23.7 φ S T
8 stoweidlem23.8 φ Z T
9 stoweidlem23.9 φ G A
10 stoweidlem23.10 φ G S G Z
11 9 ancli φ φ G A
12 eleq1 f = G f A G A
13 12 anbi2d f = G φ f A φ G A
14 feq1 f = G f : T G : T
15 13 14 imbi12d f = G φ f A f : T φ G A G : T
16 15 4 vtoclg G A φ G A G : T
17 9 11 16 sylc φ G : T
18 17 ffvelrnda φ t T G t
19 18 recnd φ t T G t
20 17 8 ffvelrnd φ G Z
21 20 adantr φ t T G Z
22 21 recnd φ t T G Z
23 19 22 negsubd φ t T G t + G Z = G t G Z
24 1 23 mpteq2da φ t T G t + G Z = t T G t G Z
25 simpr φ t T t T
26 20 renegcld φ G Z
27 26 adantr φ t T G Z
28 eqid t T G Z = t T G Z
29 28 fvmpt2 t T G Z t T G Z t = G Z
30 25 27 29 syl2anc φ t T t T G Z t = G Z
31 30 oveq2d φ t T G t + t T G Z t = G t + G Z
32 1 31 mpteq2da φ t T G t + t T G Z t = t T G t + G Z
33 26 ancli φ φ G Z
34 eleq1 x = G Z x G Z
35 34 anbi2d x = G Z φ x φ G Z
36 nfcv _ t Z
37 2 36 nffv _ t G Z
38 37 nfneg _ t G Z
39 38 nfeq2 t x = G Z
40 simpl x = G Z t T x = G Z
41 39 40 mpteq2da x = G Z t T x = t T G Z
42 41 eleq1d x = G Z t T x A t T G Z A
43 35 42 imbi12d x = G Z φ x t T x A φ G Z t T G Z A
44 43 6 vtoclg G Z φ G Z t T G Z A
45 26 33 44 sylc φ t T G Z A
46 nfmpt1 _ t t T G Z
47 5 2 46 stoweidlem8 φ G A t T G Z A t T G t + t T G Z t A
48 9 45 47 mpd3an23 φ t T G t + t T G Z t A
49 32 48 eqeltrrd φ t T G t + G Z A
50 24 49 eqeltrrd φ t T G t G Z A
51 3 50 eqeltrid φ H A
52 17 7 ffvelrnd φ G S
53 52 recnd φ G S
54 20 recnd φ G Z
55 53 54 10 subne0d φ G S G Z 0
56 52 20 resubcld φ G S G Z
57 nfcv _ t S
58 2 57 nffv _ t G S
59 nfcv _ t
60 58 59 37 nfov _ t G S G Z
61 fveq2 t = S G t = G S
62 61 oveq1d t = S G t G Z = G S G Z
63 57 60 62 3 fvmptf S T G S G Z H S = G S G Z
64 7 56 63 syl2anc φ H S = G S G Z
65 20 20 resubcld φ G Z G Z
66 37 59 37 nfov _ t G Z G Z
67 fveq2 t = Z G t = G Z
68 67 oveq1d t = Z G t G Z = G Z G Z
69 36 66 68 3 fvmptf Z T G Z G Z H Z = G Z G Z
70 8 65 69 syl2anc φ H Z = G Z G Z
71 54 subidd φ G Z G Z = 0
72 70 71 eqtrd φ H Z = 0
73 55 64 72 3netr4d φ H S H Z
74 51 73 72 3jca φ H A H S H Z H Z = 0