Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem24.1 |
|
2 |
|
stoweidlem24.2 |
|
3 |
|
stoweidlem24.3 |
|
4 |
|
stoweidlem24.4 |
|
5 |
|
stoweidlem24.5 |
|
6 |
|
stoweidlem24.6 |
|
7 |
|
stoweidlem24.8 |
|
8 |
|
stoweidlem24.9 |
|
9 |
|
stoweidlem24.10 |
|
10 |
|
1red |
|
11 |
7
|
rpred |
|
12 |
11
|
adantr |
|
13 |
10 12
|
resubcld |
|
14 |
5
|
nn0red |
|
15 |
14
|
adantr |
|
16 |
3
|
adantr |
|
17 |
1
|
rabeq2i |
|
18 |
17
|
simplbi |
|
19 |
18
|
adantl |
|
20 |
16 19
|
ffvelrnd |
|
21 |
15 20
|
remulcld |
|
22 |
4
|
adantr |
|
23 |
21 22
|
reexpcld |
|
24 |
10 23
|
resubcld |
|
25 |
20 22
|
reexpcld |
|
26 |
10 25
|
resubcld |
|
27 |
5 4
|
jca |
|
28 |
27
|
adantr |
|
29 |
|
nn0expcl |
|
30 |
28 29
|
syl |
|
31 |
26 30
|
reexpcld |
|
32 |
|
1red |
|
33 |
6
|
rpred |
|
34 |
14 33
|
remulcld |
|
35 |
34
|
rehalfcld |
|
36 |
35 4
|
reexpcld |
|
37 |
32 36
|
resubcld |
|
38 |
37
|
adantr |
|
39 |
8
|
adantr |
|
40 |
36
|
adantr |
|
41 |
35
|
adantr |
|
42 |
5
|
nn0ge0d |
|
43 |
14 42
|
jca |
|
44 |
43
|
adantr |
|
45 |
9
|
r19.21bi |
|
46 |
45
|
simpld |
|
47 |
18 46
|
sylan2 |
|
48 |
|
mulge0 |
|
49 |
44 20 47 48
|
syl12anc |
|
50 |
33
|
rehalfcld |
|
51 |
50
|
adantr |
|
52 |
17
|
simprbi |
|
53 |
52
|
adantl |
|
54 |
20 51 53
|
ltled |
|
55 |
|
lemul2a |
|
56 |
20 51 44 54 55
|
syl31anc |
|
57 |
5
|
nn0cnd |
|
58 |
57
|
adantr |
|
59 |
6
|
rpcnd |
|
60 |
59
|
adantr |
|
61 |
|
2cnne0 |
|
62 |
61
|
a1i |
|
63 |
|
divass |
|
64 |
58 60 62 63
|
syl3anc |
|
65 |
56 64
|
breqtrrd |
|
66 |
|
leexp1a |
|
67 |
21 41 22 49 65 66
|
syl32anc |
|
68 |
23 40 10 67
|
lesub2dd |
|
69 |
13 38 24 39 68
|
ltletrd |
|
70 |
20
|
recnd |
|
71 |
58 70 22
|
mulexpd |
|
72 |
71
|
eqcomd |
|
73 |
72
|
oveq2d |
|
74 |
18 45
|
sylan2 |
|
75 |
74
|
simprd |
|
76 |
|
exple1 |
|
77 |
20 47 75 22 76
|
syl31anc |
|
78 |
|
stoweidlem10 |
|
79 |
25 30 77 78
|
syl3anc |
|
80 |
73 79
|
eqbrtrrd |
|
81 |
13 24 31 69 80
|
ltletrd |
|
82 |
2 3 4 5
|
stoweidlem12 |
|
83 |
18 82
|
sylan2 |
|
84 |
81 83
|
breqtrrd |
|