Metamath Proof Explorer


Theorem stoweidlem26

Description: This lemma is used to prove that there is a function g as in the proof of BrosowskiDeutsh p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here L is used to represnt j in the paper, D is used to represent A in the paper, S is used to represent t, and E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem26.1 _ t F
stoweidlem26.2 j φ
stoweidlem26.3 t φ
stoweidlem26.4 D = j 0 N t T | F t j 1 3 E
stoweidlem26.5 B = j 0 N t T | j + 1 3 E F t
stoweidlem26.6 φ N
stoweidlem26.7 φ T V
stoweidlem26.8 φ L 1 N
stoweidlem26.9 φ S D L D L 1
stoweidlem26.10 φ F : T
stoweidlem26.11 φ E +
stoweidlem26.12 φ E < 1 3
stoweidlem26.13 φ i 0 N X i : T
stoweidlem26.14 φ i 0 N t T 0 X i t
stoweidlem26.15 φ i 0 N t B i 1 E N < X i t
Assertion stoweidlem26 φ L 4 3 E < t T i = 0 N E X i t S

Proof

Step Hyp Ref Expression
1 stoweidlem26.1 _ t F
2 stoweidlem26.2 j φ
3 stoweidlem26.3 t φ
4 stoweidlem26.4 D = j 0 N t T | F t j 1 3 E
5 stoweidlem26.5 B = j 0 N t T | j + 1 3 E F t
6 stoweidlem26.6 φ N
7 stoweidlem26.7 φ T V
8 stoweidlem26.8 φ L 1 N
9 stoweidlem26.9 φ S D L D L 1
10 stoweidlem26.10 φ F : T
11 stoweidlem26.11 φ E +
12 stoweidlem26.12 φ E < 1 3
13 stoweidlem26.13 φ i 0 N X i : T
14 stoweidlem26.14 φ i 0 N t T 0 X i t
15 stoweidlem26.15 φ i 0 N t B i 1 E N < X i t
16 1re 1
17 eleq1 L = 1 L 1
18 16 17 mpbiri L = 1 L
19 18 adantl φ L = 1 L
20 4re 4
21 20 a1i φ L = 1 4
22 3re 3
23 22 a1i φ L = 1 3
24 3ne0 3 0
25 24 a1i φ L = 1 3 0
26 21 23 25 redivcld φ L = 1 4 3
27 19 26 resubcld φ L = 1 L 4 3
28 11 rpred φ E
29 28 adantr φ L = 1 E
30 27 29 remulcld φ L = 1 L 4 3 E
31 0red φ L = 1 0
32 fzfid φ 0 N Fin
33 28 adantr φ i 0 N E
34 eldif S D L D L 1 S D L ¬ S D L 1
35 9 34 sylib φ S D L ¬ S D L 1
36 35 simpld φ S D L
37 oveq1 j = L j 1 3 = L 1 3
38 37 oveq1d j = L j 1 3 E = L 1 3 E
39 38 breq2d j = L F t j 1 3 E F t L 1 3 E
40 39 rabbidv j = L t T | F t j 1 3 E = t T | F t L 1 3 E
41 fz1ssfz0 1 N 0 N
42 41 8 sseldi φ L 0 N
43 rabexg T V t T | F t L 1 3 E V
44 7 43 syl φ t T | F t L 1 3 E V
45 4 40 42 44 fvmptd3 φ D L = t T | F t L 1 3 E
46 36 45 eleqtrd φ S t T | F t L 1 3 E
47 nfcv _ t S
48 nfcv _ t T
49 1 47 nffv _ t F S
50 nfcv _ t
51 nfcv _ t L 1 3 E
52 49 50 51 nfbr t F S L 1 3 E
53 fveq2 t = S F t = F S
54 53 breq1d t = S F t L 1 3 E F S L 1 3 E
55 47 48 52 54 elrabf S t T | F t L 1 3 E S T F S L 1 3 E
56 46 55 sylib φ S T F S L 1 3 E
57 56 simpld φ S T
58 57 adantr φ i 0 N S T
59 13 58 ffvelrnd φ i 0 N X i S
60 33 59 remulcld φ i 0 N E X i S
61 32 60 fsumrecl φ i = 0 N E X i S
62 61 adantr φ L = 1 i = 0 N E X i S
63 20 22 24 redivcli 4 3
64 63 a1i φ L = 1 4 3
65 19 64 resubcld φ L = 1 L 4 3
66 19 recnd φ L = 1 L
67 66 subid1d φ L = 1 L 0 = L
68 3cn 3
69 68 24 dividi 3 3 = 1
70 3lt4 3 < 4
71 3pos 0 < 3
72 22 20 22 71 ltdiv1ii 3 < 4 3 3 < 4 3
73 70 72 mpbi 3 3 < 4 3
74 69 73 eqbrtrri 1 < 4 3
75 breq1 L = 1 L < 4 3 1 < 4 3
76 75 adantl φ L = 1 L < 4 3 1 < 4 3
77 74 76 mpbiri φ L = 1 L < 4 3
78 67 77 eqbrtrd φ L = 1 L 0 < 4 3
79 19 31 64 78 ltsub23d φ L = 1 L 4 3 < 0
80 11 rpgt0d φ 0 < E
81 80 adantr φ L = 1 0 < E
82 mulltgt0 L 4 3 L 4 3 < 0 E 0 < E L 4 3 E < 0
83 65 79 29 81 82 syl22anc φ L = 1 L 4 3 E < 0
84 0cn 0
85 fsumconst 0 N Fin 0 i = 0 N 0 = 0 N 0
86 32 84 85 sylancl φ i = 0 N 0 = 0 N 0
87 hashcl 0 N Fin 0 N 0
88 nn0cn 0 N 0 0 N
89 32 87 88 3syl φ 0 N
90 89 mul01d φ 0 N 0 = 0
91 86 90 eqtrd φ i = 0 N 0 = 0
92 91 adantr φ L = 1 i = 0 N 0 = 0
93 0red φ i 0 N 0
94 11 rpge0d φ 0 E
95 94 adantr φ i 0 N 0 E
96 nfv t i 0 N
97 3 96 nfan t φ i 0 N
98 nfv t 0 X i S
99 97 98 nfim t φ i 0 N 0 X i S
100 fveq2 t = S X i t = X i S
101 100 breq2d t = S 0 X i t 0 X i S
102 101 imbi2d t = S φ i 0 N 0 X i t φ i 0 N 0 X i S
103 14 3expia φ i 0 N t T 0 X i t
104 103 com12 t T φ i 0 N 0 X i t
105 47 99 102 104 vtoclgaf S T φ i 0 N 0 X i S
106 58 105 mpcom φ i 0 N 0 X i S
107 33 59 95 106 mulge0d φ i 0 N 0 E X i S
108 32 93 60 107 fsumle φ i = 0 N 0 i = 0 N E X i S
109 108 adantr φ L = 1 i = 0 N 0 i = 0 N E X i S
110 92 109 eqbrtrrd φ L = 1 0 i = 0 N E X i S
111 30 31 62 83 110 ltletrd φ L = 1 L 4 3 E < i = 0 N E X i S
112 elfzelz L 1 N L
113 zre L L
114 8 112 113 3syl φ L
115 20 a1i φ 4
116 22 a1i φ 3
117 24 a1i φ 3 0
118 115 116 117 redivcld φ 4 3
119 114 118 resubcld φ L 4 3
120 119 28 remulcld φ L 4 3 E
121 120 adantr φ ¬ L = 1 L 4 3 E
122 16 a1i φ 1
123 28 6 nndivred φ E N
124 122 123 resubcld φ 1 E N
125 114 122 resubcld φ L 1
126 124 125 remulcld φ 1 E N L 1
127 28 126 remulcld φ E 1 E N L 1
128 127 adantr φ ¬ L = 1 E 1 E N L 1
129 fzfid φ 0 L 2 Fin
130 8 112 syl φ L
131 2z 2
132 131 a1i φ 2
133 130 132 zsubcld φ L 2
134 6 nnzd φ N
135 130 zred φ L
136 2re 2
137 136 a1i φ 2
138 135 137 resubcld φ L 2
139 6 nnred φ N
140 0le2 0 2
141 0red φ 0
142 141 137 135 lesub2d φ 0 2 L 2 L 0
143 140 142 mpbii φ L 2 L 0
144 130 zcnd φ L
145 144 subid1d φ L 0 = L
146 143 145 breqtrd φ L 2 L
147 elfzle2 L 1 N L N
148 8 147 syl φ L N
149 138 135 139 146 148 letrd φ L 2 N
150 133 134 149 3jca φ L 2 N L 2 N
151 eluz2 N L 2 L 2 N L 2 N
152 150 151 sylibr φ N L 2
153 fzss2 N L 2 0 L 2 0 N
154 152 153 syl φ 0 L 2 0 N
155 154 sselda φ i 0 L 2 i 0 N
156 155 59 syldan φ i 0 L 2 X i S
157 129 156 fsumrecl φ i = 0 L 2 X i S
158 28 157 remulcld φ E i = 0 L 2 X i S
159 158 adantr φ ¬ L = 1 E i = 0 L 2 X i S
160 28 125 remulcld φ E L 1
161 28 28 remulcld φ E E
162 160 161 resubcld φ E L 1 E E
163 125 6 nndivred φ L 1 N
164 161 163 remulcld φ E E L 1 N
165 160 164 resubcld φ E L 1 E E L 1 N
166 125 28 resubcld φ L - 1 - E
167 122 28 readdcld φ 1 + E
168 16 22 24 redivcli 1 3
169 168 a1i φ 1 3
170 28 169 122 12 ltadd2dd φ 1 + E < 1 + 1 3
171 ax-1cn 1
172 68 171 68 24 divdiri 3 + 1 3 = 3 3 + 1 3
173 3p1e4 3 + 1 = 4
174 173 oveq1i 3 + 1 3 = 4 3
175 69 oveq1i 3 3 + 1 3 = 1 + 1 3
176 172 174 175 3eqtr3ri 1 + 1 3 = 4 3
177 170 176 breqtrdi φ 1 + E < 4 3
178 167 118 114 177 ltsub2dd φ L 4 3 < L 1 + E
179 171 a1i φ 1
180 11 rpcnd φ E
181 144 179 180 subsub4d φ L - 1 - E = L 1 + E
182 178 181 breqtrrd φ L 4 3 < L - 1 - E
183 119 166 11 182 ltmul1dd φ L 4 3 E < L - 1 - E E
184 144 179 subcld φ L 1
185 184 180 subcld φ L - 1 - E
186 180 185 mulcomd φ E L - 1 - E = L - 1 - E E
187 180 184 180 subdid φ E L - 1 - E = E L 1 E E
188 186 187 eqtr3d φ L - 1 - E E = E L 1 E E
189 183 188 breqtrd φ L 4 3 E < E L 1 E E
190 1zzd φ 1
191 elfz L 1 N L 1 N 1 L L N
192 130 190 134 191 syl3anc φ L 1 N 1 L L N
193 8 192 mpbid φ 1 L L N
194 193 simprd φ L N
195 zlem1lt L N L N L 1 < N
196 130 134 195 syl2anc φ L N L 1 < N
197 194 196 mpbid φ L 1 < N
198 6 nngt0d φ 0 < N
199 ltdiv1 L 1 N N 0 < N L 1 < N L 1 N < N N
200 125 139 139 198 199 syl112anc φ L 1 < N L 1 N < N N
201 197 200 mpbid φ L 1 N < N N
202 6 nncnd φ N
203 6 nnne0d φ N 0
204 202 203 dividd φ N N = 1
205 201 204 breqtrd φ L 1 N < 1
206 28 28 80 80 mulgt0d φ 0 < E E
207 ltmul2 L 1 N 1 E E 0 < E E L 1 N < 1 E E L 1 N < E E 1
208 163 122 161 206 207 syl112anc φ L 1 N < 1 E E L 1 N < E E 1
209 205 208 mpbid φ E E L 1 N < E E 1
210 180 180 mulcld φ E E
211 210 mulid1d φ E E 1 = E E
212 209 211 breqtrd φ E E L 1 N < E E
213 164 161 160 212 ltsub2dd φ E L 1 E E < E L 1 E E L 1 N
214 120 162 165 189 213 lttrd φ L 4 3 E < E L 1 E E L 1 N
215 180 202 203 divcld φ E N
216 179 215 184 subdird φ 1 E N L 1 = 1 L 1 E N L 1
217 184 mulid2d φ 1 L 1 = L 1
218 217 oveq1d φ 1 L 1 E N L 1 = L - 1 - E N L 1
219 216 218 eqtrd φ 1 E N L 1 = L - 1 - E N L 1
220 219 oveq2d φ E 1 E N L 1 = E L - 1 - E N L 1
221 215 184 mulcld φ E N L 1
222 180 184 221 subdid φ E L - 1 - E N L 1 = E L 1 E E N L 1
223 180 202 184 203 div32d φ E N L 1 = E L 1 N
224 223 oveq2d φ E E N L 1 = E E L 1 N
225 184 202 203 divcld φ L 1 N
226 180 180 225 mulassd φ E E L 1 N = E E L 1 N
227 224 226 eqtr4d φ E E N L 1 = E E L 1 N
228 227 oveq2d φ E L 1 E E N L 1 = E L 1 E E L 1 N
229 220 222 228 3eqtrd φ E 1 E N L 1 = E L 1 E E L 1 N
230 214 229 breqtrrd φ L 4 3 E < E 1 E N L 1
231 230 adantr φ ¬ L = 1 L 4 3 E < E 1 E N L 1
232 179 215 subcld φ 1 E N
233 fsumconst 0 L 2 Fin 1 E N i = 0 L 2 1 E N = 0 L 2 1 E N
234 129 232 233 syl2anc φ i = 0 L 2 1 E N = 0 L 2 1 E N
235 234 adantr φ ¬ L = 1 i = 0 L 2 1 E N = 0 L 2 1 E N
236 0zd φ ¬ L = 1 0
237 8 adantr φ ¬ L = 1 L 1 N
238 237 112 syl φ ¬ L = 1 L
239 131 a1i φ ¬ L = 1 2
240 238 239 zsubcld φ ¬ L = 1 L 2
241 elnnuz N N 1
242 6 241 sylib φ N 1
243 elfzp12 N 1 L 1 N L = 1 L 1 + 1 N
244 242 243 syl φ L 1 N L = 1 L 1 + 1 N
245 8 244 mpbid φ L = 1 L 1 + 1 N
246 245 orcanai φ ¬ L = 1 L 1 + 1 N
247 1p1e2 1 + 1 = 2
248 247 a1i φ ¬ L = 1 1 + 1 = 2
249 248 oveq1d φ ¬ L = 1 1 + 1 N = 2 N
250 246 249 eleqtrd φ ¬ L = 1 L 2 N
251 elfzle1 L 2 N 2 L
252 250 251 syl φ ¬ L = 1 2 L
253 114 adantr φ ¬ L = 1 L
254 136 a1i φ ¬ L = 1 2
255 253 254 subge0d φ ¬ L = 1 0 L 2 2 L
256 252 255 mpbird φ ¬ L = 1 0 L 2
257 236 240 256 3jca φ ¬ L = 1 0 L 2 0 L 2
258 eluz2 L 2 0 0 L 2 0 L 2
259 257 258 sylibr φ ¬ L = 1 L 2 0
260 hashfz L 2 0 0 L 2 = L 2 - 0 + 1
261 259 260 syl φ ¬ L = 1 0 L 2 = L 2 - 0 + 1
262 2cn 2
263 262 a1i φ 2
264 144 263 subcld φ L 2
265 264 subid1d φ L - 2 - 0 = L 2
266 265 oveq1d φ L 2 - 0 + 1 = L - 2 + 1
267 144 263 179 subadd23d φ L - 2 + 1 = L + 1 - 2
268 262 171 negsubdi2i 2 1 = 1 2
269 2m1e1 2 1 = 1
270 269 negeqi 2 1 = 1
271 268 270 eqtr3i 1 2 = 1
272 271 a1i φ 1 2 = 1
273 272 oveq2d φ L + 1 - 2 = L + -1
274 144 179 negsubd φ L + -1 = L 1
275 273 274 eqtrd φ L + 1 - 2 = L 1
276 266 267 275 3eqtrd φ L 2 - 0 + 1 = L 1
277 276 adantr φ ¬ L = 1 L 2 - 0 + 1 = L 1
278 261 277 eqtrd φ ¬ L = 1 0 L 2 = L 1
279 278 oveq1d φ ¬ L = 1 0 L 2 1 E N = L 1 1 E N
280 184 232 mulcomd φ L 1 1 E N = 1 E N L 1
281 280 adantr φ ¬ L = 1 L 1 1 E N = 1 E N L 1
282 235 279 281 3eqtrd φ ¬ L = 1 i = 0 L 2 1 E N = 1 E N L 1
283 fzfid φ ¬ L = 1 0 L 2 Fin
284 fzn0 0 L 2 L 2 0
285 259 284 sylibr φ ¬ L = 1 0 L 2
286 124 ad2antrr φ ¬ L = 1 i 0 L 2 1 E N
287 simpll φ ¬ L = 1 i 0 L 2 φ
288 155 adantlr φ ¬ L = 1 i 0 L 2 i 0 N
289 287 288 59 syl2anc φ ¬ L = 1 i 0 L 2 X i S
290 57 adantr φ i 0 L 2 S T
291 elfzelz i 0 L 2 i
292 291 zred i 0 L 2 i
293 292 adantl φ i 0 L 2 i
294 168 a1i φ i 0 L 2 1 3
295 293 294 readdcld φ i 0 L 2 i + 1 3
296 28 adantr φ i 0 L 2 E
297 295 296 remulcld φ i 0 L 2 i + 1 3 E
298 114 adantr φ i 0 L 2 L
299 136 a1i φ i 0 L 2 2
300 298 299 resubcld φ i 0 L 2 L 2
301 300 294 readdcld φ i 0 L 2 L - 2 + 1 3
302 301 296 remulcld φ i 0 L 2 L - 2 + 1 3 E
303 10 57 jca φ F : T S T
304 303 adantr φ i 0 L 2 F : T S T
305 ffvelrn F : T S T F S
306 304 305 syl φ i 0 L 2 F S
307 elfzle2 i 0 L 2 i L 2
308 307 adantl φ i 0 L 2 i L 2
309 293 300 294 308 leadd1dd φ i 0 L 2 i + 1 3 L - 2 + 1 3
310 28 80 jca φ E 0 < E
311 310 adantr φ i 0 L 2 E 0 < E
312 lemul1 i + 1 3 L - 2 + 1 3 E 0 < E i + 1 3 L - 2 + 1 3 i + 1 3 E L - 2 + 1 3 E
313 295 301 311 312 syl3anc φ i 0 L 2 i + 1 3 L - 2 + 1 3 i + 1 3 E L - 2 + 1 3 E
314 309 313 mpbid φ i 0 L 2 i + 1 3 E L - 2 + 1 3 E
315 114 137 resubcld φ L 2
316 315 169 readdcld φ L - 2 + 1 3
317 316 28 remulcld φ L - 2 + 1 3 E
318 10 57 ffvelrnd φ F S
319 125 169 resubcld φ L - 1 - 1 3
320 319 28 remulcld φ L - 1 - 1 3 E
321 addid1 1 1 + 0 = 1
322 321 eqcomd 1 1 = 1 + 0
323 171 322 mp1i φ 1 = 1 + 0
324 179 subidd φ 1 1 = 0
325 324 eqcomd φ 0 = 1 1
326 325 oveq2d φ 1 + 0 = 1 + 1 - 1
327 addsubass 1 1 1 1 + 1 - 1 = 1 + 1 - 1
328 327 eqcomd 1 1 1 1 + 1 - 1 = 1 + 1 - 1
329 179 179 179 328 syl3anc φ 1 + 1 - 1 = 1 + 1 - 1
330 323 326 329 3eqtrd φ 1 = 1 + 1 - 1
331 330 oveq2d φ L 1 = L 1 + 1 - 1
332 247 a1i φ 1 + 1 = 2
333 332 oveq1d φ 1 + 1 - 1 = 2 1
334 333 oveq2d φ L 1 + 1 - 1 = L 2 1
335 144 263 179 subsubd φ L 2 1 = L - 2 + 1
336 331 334 335 3eqtrd φ L 1 = L - 2 + 1
337 336 oveq1d φ L - 1 - 2 3 = L 2 + 1 - 2 3
338 262 68 24 divcli 2 3
339 338 a1i φ 2 3
340 264 179 339 addsubassd φ L 2 + 1 - 2 3 = L 2 + 1 - 2 3
341 171 68 24 divcli 1 3
342 df-3 3 = 2 + 1
343 342 oveq1i 3 3 = 2 + 1 3
344 262 171 68 24 divdiri 2 + 1 3 = 2 3 + 1 3
345 343 69 344 3eqtr3ri 2 3 + 1 3 = 1
346 171 338 341 345 subaddrii 1 2 3 = 1 3
347 346 a1i φ 1 2 3 = 1 3
348 347 oveq2d φ L 2 + 1 - 2 3 = L - 2 + 1 3
349 337 340 348 3eqtrd φ L - 1 - 2 3 = L - 2 + 1 3
350 136 22 24 redivcli 2 3
351 350 a1i φ 2 3
352 1lt2 1 < 2
353 22 71 pm3.2i 3 0 < 3
354 16 136 353 3pm3.2i 1 2 3 0 < 3
355 ltdiv1 1 2 3 0 < 3 1 < 2 1 3 < 2 3
356 354 355 mp1i φ 1 < 2 1 3 < 2 3
357 352 356 mpbii φ 1 3 < 2 3
358 169 351 125 357 ltsub2dd φ L - 1 - 2 3 < L - 1 - 1 3
359 349 358 eqbrtrrd φ L - 2 + 1 3 < L - 1 - 1 3
360 316 319 11 359 ltmul1dd φ L - 2 + 1 3 E < L - 1 - 1 3 E
361 35 simprd φ ¬ S D L 1
362 oveq1 j = L 1 j 1 3 = L - 1 - 1 3
363 362 oveq1d j = L 1 j 1 3 E = L - 1 - 1 3 E
364 363 breq2d j = L 1 F t j 1 3 E F t L - 1 - 1 3 E
365 364 rabbidv j = L 1 t T | F t j 1 3 E = t T | F t L - 1 - 1 3 E
366 193 simpld φ 1 L
367 139 122 readdcld φ N + 1
368 139 lep1d φ N N + 1
369 114 139 367 194 368 letrd φ L N + 1
370 134 peano2zd φ N + 1
371 elfz L 1 N + 1 L 1 N + 1 1 L L N + 1
372 130 190 370 371 syl3anc φ L 1 N + 1 1 L L N + 1
373 366 369 372 mpbir2and φ L 1 N + 1
374 144 179 npcand φ L - 1 + 1 = L
375 0p1e1 0 + 1 = 1
376 375 a1i φ 0 + 1 = 1
377 376 oveq1d φ 0 + 1 N + 1 = 1 N + 1
378 373 374 377 3eltr4d φ L - 1 + 1 0 + 1 N + 1
379 0zd φ 0
380 130 190 zsubcld φ L 1
381 fzaddel 0 N L 1 1 L 1 0 N L - 1 + 1 0 + 1 N + 1
382 379 134 380 190 381 syl22anc φ L 1 0 N L - 1 + 1 0 + 1 N + 1
383 378 382 mpbird φ L 1 0 N
384 rabexg T V t T | F t L - 1 - 1 3 E V
385 7 384 syl φ t T | F t L - 1 - 1 3 E V
386 4 365 383 385 fvmptd3 φ D L 1 = t T | F t L - 1 - 1 3 E
387 361 386 neleqtrd φ ¬ S t T | F t L - 1 - 1 3 E
388 nfcv _ t L - 1 - 1 3 E
389 49 50 388 nfbr t F S L - 1 - 1 3 E
390 53 breq1d t = S F t L - 1 - 1 3 E F S L - 1 - 1 3 E
391 47 48 389 390 elrabf S t T | F t L - 1 - 1 3 E S T F S L - 1 - 1 3 E
392 387 391 sylnib φ ¬ S T F S L - 1 - 1 3 E
393 ianor ¬ S T F S L - 1 - 1 3 E ¬ S T ¬ F S L - 1 - 1 3 E
394 392 393 sylib φ ¬ S T ¬ F S L - 1 - 1 3 E
395 olc S T ¬ F S L - 1 - 1 3 E S T
396 395 anim1i S T ¬ S T ¬ F S L - 1 - 1 3 E ¬ F S L - 1 - 1 3 E S T ¬ S T ¬ F S L - 1 - 1 3 E
397 57 394 396 syl2anc φ ¬ F S L - 1 - 1 3 E S T ¬ S T ¬ F S L - 1 - 1 3 E
398 orcom ¬ S T ¬ F S L - 1 - 1 3 E ¬ F S L - 1 - 1 3 E ¬ S T
399 398 anbi2i ¬ F S L - 1 - 1 3 E S T ¬ S T ¬ F S L - 1 - 1 3 E ¬ F S L - 1 - 1 3 E S T ¬ F S L - 1 - 1 3 E ¬ S T
400 397 399 sylib φ ¬ F S L - 1 - 1 3 E S T ¬ F S L - 1 - 1 3 E ¬ S T
401 pm4.43 ¬ F S L - 1 - 1 3 E ¬ F S L - 1 - 1 3 E S T ¬ F S L - 1 - 1 3 E ¬ S T
402 400 401 sylibr φ ¬ F S L - 1 - 1 3 E
403 320 318 ltnled φ L - 1 - 1 3 E < F S ¬ F S L - 1 - 1 3 E
404 402 403 mpbird φ L - 1 - 1 3 E < F S
405 317 320 318 360 404 lttrd φ L - 2 + 1 3 E < F S
406 317 318 405 ltled φ L - 2 + 1 3 E F S
407 406 adantr φ i 0 L 2 L - 2 + 1 3 E F S
408 297 302 306 314 407 letrd φ i 0 L 2 i + 1 3 E F S
409 nfcv _ t i + 1 3 E
410 409 50 49 nfbr t i + 1 3 E F S
411 53 breq2d t = S i + 1 3 E F t i + 1 3 E F S
412 47 48 410 411 elrabf S t T | i + 1 3 E F t S T i + 1 3 E F S
413 290 408 412 sylanbrc φ i 0 L 2 S t T | i + 1 3 E F t
414 oveq1 j = i j + 1 3 = i + 1 3
415 414 oveq1d j = i j + 1 3 E = i + 1 3 E
416 415 breq1d j = i j + 1 3 E F t i + 1 3 E F t
417 416 rabbidv j = i t T | j + 1 3 E F t = t T | i + 1 3 E F t
418 rabexg T V t T | i + 1 3 E F t V
419 7 418 syl φ t T | i + 1 3 E F t V
420 419 adantr φ i 0 L 2 t T | i + 1 3 E F t V
421 5 417 155 420 fvmptd3 φ i 0 L 2 B i = t T | i + 1 3 E F t
422 413 421 eleqtrrd φ i 0 L 2 S B i
423 150 3ad2ant1 φ i 0 L 2 S B i L 2 N L 2 N
424 423 151 sylibr φ i 0 L 2 S B i N L 2
425 424 153 syl φ i 0 L 2 S B i 0 L 2 0 N
426 simp2 φ i 0 L 2 S B i i 0 L 2
427 425 426 sseldd φ i 0 L 2 S B i i 0 N
428 elex S B i S V
429 428 3ad2ant3 φ i 0 N S B i S V
430 nfcv _ t 0 N
431 nfrab1 _ t t T | j + 1 3 E F t
432 430 431 nfmpt _ t j 0 N t T | j + 1 3 E F t
433 5 432 nfcxfr _ t B
434 nfcv _ t i
435 433 434 nffv _ t B i
436 435 nfel2 t S B i
437 3 96 436 nf3an t φ i 0 N S B i
438 nfv t 1 E N < X i S
439 437 438 nfim t φ i 0 N S B i 1 E N < X i S
440 eleq1 t = S t B i S B i
441 440 3anbi3d t = S φ i 0 N t B i φ i 0 N S B i
442 100 breq2d t = S 1 E N < X i t 1 E N < X i S
443 441 442 imbi12d t = S φ i 0 N t B i 1 E N < X i t φ i 0 N S B i 1 E N < X i S
444 439 443 15 vtoclg1f S V φ i 0 N S B i 1 E N < X i S
445 429 444 mpcom φ i 0 N S B i 1 E N < X i S
446 427 445 syld3an2 φ i 0 L 2 S B i 1 E N < X i S
447 422 446 mpd3an3 φ i 0 L 2 1 E N < X i S
448 447 adantlr φ ¬ L = 1 i 0 L 2 1 E N < X i S
449 283 285 286 289 448 fsumlt φ ¬ L = 1 i = 0 L 2 1 E N < i = 0 L 2 X i S
450 282 449 eqbrtrrd φ ¬ L = 1 1 E N L 1 < i = 0 L 2 X i S
451 126 adantr φ ¬ L = 1 1 E N L 1
452 157 adantr φ ¬ L = 1 i = 0 L 2 X i S
453 310 adantr φ ¬ L = 1 E 0 < E
454 ltmul2 1 E N L 1 i = 0 L 2 X i S E 0 < E 1 E N L 1 < i = 0 L 2 X i S E 1 E N L 1 < E i = 0 L 2 X i S
455 451 452 453 454 syl3anc φ ¬ L = 1 1 E N L 1 < i = 0 L 2 X i S E 1 E N L 1 < E i = 0 L 2 X i S
456 450 455 mpbid φ ¬ L = 1 E 1 E N L 1 < E i = 0 L 2 X i S
457 121 128 159 231 456 lttrd φ ¬ L = 1 L 4 3 E < E i = 0 L 2 X i S
458 155 60 syldan φ i 0 L 2 E X i S
459 458 adantlr φ ¬ L = 1 i 0 L 2 E X i S
460 459 recnd φ ¬ L = 1 i 0 L 2 E X i S
461 283 460 fsumcl φ ¬ L = 1 i = 0 L 2 E X i S
462 461 addid1d φ ¬ L = 1 i = 0 L 2 E X i S + 0 = i = 0 L 2 E X i S
463 0red φ ¬ L = 1 0
464 fzfid φ ¬ L = 1 L 1 N Fin
465 28 adantr φ i L 1 N E
466 0red φ i L 1 N 0
467 125 adantr φ i L 1 N L 1
468 elfzelz i L 1 N i
469 468 zred i L 1 N i
470 469 adantl φ i L 1 N i
471 1m1e0 1 1 = 0
472 122 114 122 366 lesub1dd φ 1 1 L 1
473 471 472 eqbrtrrid φ 0 L 1
474 473 adantr φ i L 1 N 0 L 1
475 simpr φ i L 1 N i L 1 N
476 468 adantl φ i L 1 N i
477 380 adantr φ i L 1 N L 1
478 134 adantr φ i L 1 N N
479 elfz i L 1 N i L 1 N L 1 i i N
480 476 477 478 479 syl3anc φ i L 1 N i L 1 N L 1 i i N
481 475 480 mpbid φ i L 1 N L 1 i i N
482 481 simpld φ i L 1 N L 1 i
483 466 467 470 474 482 letrd φ i L 1 N 0 i
484 elfzle2 i L 1 N i N
485 484 adantl φ i L 1 N i N
486 0zd φ i L 1 N 0
487 elfz i 0 N i 0 N 0 i i N
488 476 486 478 487 syl3anc φ i L 1 N i 0 N 0 i i N
489 483 485 488 mpbir2and φ i L 1 N i 0 N
490 489 59 syldan φ i L 1 N X i S
491 465 490 remulcld φ i L 1 N E X i S
492 491 adantlr φ ¬ L = 1 i L 1 N E X i S
493 464 492 fsumrecl φ ¬ L = 1 i = L 1 N E X i S
494 283 459 fsumrecl φ ¬ L = 1 i = 0 L 2 E X i S
495 fzfid φ L 1 N Fin
496 180 adantr φ i L 1 N E
497 496 mul01d φ i L 1 N E 0 = 0
498 489 106 syldan φ i L 1 N 0 X i S
499 310 adantr φ i L 1 N E 0 < E
500 lemul2 0 X i S E 0 < E 0 X i S E 0 E X i S
501 466 490 499 500 syl3anc φ i L 1 N 0 X i S E 0 E X i S
502 498 501 mpbid φ i L 1 N E 0 E X i S
503 497 502 eqbrtrrd φ i L 1 N 0 E X i S
504 495 491 503 fsumge0 φ 0 i = L 1 N E X i S
505 504 adantr φ ¬ L = 1 0 i = L 1 N E X i S
506 463 493 494 505 leadd2dd φ ¬ L = 1 i = 0 L 2 E X i S + 0 i = 0 L 2 E X i S + i = L 1 N E X i S
507 462 506 eqbrtrrd φ ¬ L = 1 i = 0 L 2 E X i S i = 0 L 2 E X i S + i = L 1 N E X i S
508 156 recnd φ i 0 L 2 X i S
509 129 180 508 fsummulc2 φ E i = 0 L 2 X i S = i = 0 L 2 E X i S
510 509 adantr φ ¬ L = 1 E i = 0 L 2 X i S = i = 0 L 2 E X i S
511 elfzelz j 0 L 2 j
512 511 adantl φ j 0 L 2 j
513 512 zred φ j 0 L 2 j
514 315 adantr φ j 0 L 2 L 2
515 125 adantr φ j 0 L 2 L 1
516 simpr φ j 0 L 2 j 0 L 2
517 0zd φ j 0 L 2 0
518 133 adantr φ j 0 L 2 L 2
519 elfz j 0 L 2 j 0 L 2 0 j j L 2
520 512 517 518 519 syl3anc φ j 0 L 2 j 0 L 2 0 j j L 2
521 516 520 mpbid φ j 0 L 2 0 j j L 2
522 521 simprd φ j 0 L 2 j L 2
523 122 137 114 ltsub2d φ 1 < 2 L 2 < L 1
524 352 523 mpbii φ L 2 < L 1
525 524 adantr φ j 0 L 2 L 2 < L 1
526 513 514 515 522 525 lelttrd φ j 0 L 2 j < L 1
527 513 515 ltnled φ j 0 L 2 j < L 1 ¬ L 1 j
528 526 527 mpbid φ j 0 L 2 ¬ L 1 j
529 528 intnanrd φ j 0 L 2 ¬ L 1 j j N
530 380 adantr φ j 0 L 2 L 1
531 134 adantr φ j 0 L 2 N
532 elfz j L 1 N j L 1 N L 1 j j N
533 512 530 531 532 syl3anc φ j 0 L 2 j L 1 N L 1 j j N
534 529 533 mtbird φ j 0 L 2 ¬ j L 1 N
535 534 ex φ j 0 L 2 ¬ j L 1 N
536 2 535 ralrimi φ j 0 L 2 ¬ j L 1 N
537 disj 0 L 2 L 1 N = j 0 L 2 ¬ j L 1 N
538 536 537 sylibr φ 0 L 2 L 1 N =
539 538 adantr φ ¬ L = 1 0 L 2 L 1 N =
540 149 adantr φ ¬ L = 1 L 2 N
541 133 379 134 3jca φ L 2 0 N
542 541 adantr φ ¬ L = 1 L 2 0 N
543 elfz L 2 0 N L 2 0 N 0 L 2 L 2 N
544 542 543 syl φ ¬ L = 1 L 2 0 N 0 L 2 L 2 N
545 256 540 544 mpbir2and φ ¬ L = 1 L 2 0 N
546 fzsplit L 2 0 N 0 N = 0 L 2 L - 2 + 1 N
547 545 546 syl φ ¬ L = 1 0 N = 0 L 2 L - 2 + 1 N
548 267 273 274 3eqtrd φ L - 2 + 1 = L 1
549 548 oveq1d φ L - 2 + 1 N = L 1 N
550 549 uneq2d φ 0 L 2 L - 2 + 1 N = 0 L 2 L 1 N
551 550 adantr φ ¬ L = 1 0 L 2 L - 2 + 1 N = 0 L 2 L 1 N
552 547 551 eqtrd φ ¬ L = 1 0 N = 0 L 2 L 1 N
553 fzfid φ ¬ L = 1 0 N Fin
554 180 adantr φ i 0 N E
555 59 recnd φ i 0 N X i S
556 554 555 mulcld φ i 0 N E X i S
557 556 adantlr φ ¬ L = 1 i 0 N E X i S
558 539 552 553 557 fsumsplit φ ¬ L = 1 i = 0 N E X i S = i = 0 L 2 E X i S + i = L 1 N E X i S
559 507 510 558 3brtr4d φ ¬ L = 1 E i = 0 L 2 X i S i = 0 N E X i S
560 120 158 61 3jca φ L 4 3 E E i = 0 L 2 X i S i = 0 N E X i S
561 560 adantr φ ¬ L = 1 L 4 3 E E i = 0 L 2 X i S i = 0 N E X i S
562 ltletr L 4 3 E E i = 0 L 2 X i S i = 0 N E X i S L 4 3 E < E i = 0 L 2 X i S E i = 0 L 2 X i S i = 0 N E X i S L 4 3 E < i = 0 N E X i S
563 561 562 syl φ ¬ L = 1 L 4 3 E < E i = 0 L 2 X i S E i = 0 L 2 X i S i = 0 N E X i S L 4 3 E < i = 0 N E X i S
564 457 559 563 mp2and φ ¬ L = 1 L 4 3 E < i = 0 N E X i S
565 111 564 pm2.61dan φ L 4 3 E < i = 0 N E X i S
566 sumex i = 0 N E X i S V
567 100 oveq2d t = S E X i t = E X i S
568 567 sumeq2sdv t = S i = 0 N E X i t = i = 0 N E X i S
569 eqid t T i = 0 N E X i t = t T i = 0 N E X i t
570 568 569 fvmptg S T i = 0 N E X i S V t T i = 0 N E X i t S = i = 0 N E X i S
571 57 566 570 sylancl φ t T i = 0 N E X i t S = i = 0 N E X i S
572 565 571 breqtrrd φ L 4 3 E < t T i = 0 N E X i t S