Metamath Proof Explorer


Theorem stoweidlem28

Description: There exists a δ as in Lemma 1 BrosowskiDeutsh p. 90: 0 < delta < 1 and p >= delta on T \ U . Here d is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem28.1 _ t U
stoweidlem28.2 t φ
stoweidlem28.3 K = topGen ran .
stoweidlem28.4 T = J
stoweidlem28.5 φ J Comp
stoweidlem28.6 φ P J Cn K
stoweidlem28.7 φ t T U 0 < P t
stoweidlem28.8 φ U J
Assertion stoweidlem28 φ d d + d < 1 t T U d P t

Proof

Step Hyp Ref Expression
1 stoweidlem28.1 _ t U
2 stoweidlem28.2 t φ
3 stoweidlem28.3 K = topGen ran .
4 stoweidlem28.4 T = J
5 stoweidlem28.5 φ J Comp
6 stoweidlem28.6 φ P J Cn K
7 stoweidlem28.7 φ t T U 0 < P t
8 stoweidlem28.8 φ U J
9 halfre 1 2
10 halfgt0 0 < 1 2
11 9 10 elrpii 1 2 +
12 11 a1i φ T U = 1 2 +
13 halflt1 1 2 < 1
14 13 a1i φ T U = 1 2 < 1
15 nfcv _ t T
16 15 1 nfdif _ t T U
17 16 nfeq1 t T U =
18 17 rzalf T U = t T U 1 2 P t
19 18 adantl φ T U = t T U 1 2 P t
20 ovex 1 2 V
21 eleq1 d = 1 2 d + 1 2 +
22 breq1 d = 1 2 d < 1 1 2 < 1
23 breq1 d = 1 2 d P t 1 2 P t
24 23 ralbidv d = 1 2 t T U d P t t T U 1 2 P t
25 21 22 24 3anbi123d d = 1 2 d + d < 1 t T U d P t 1 2 + 1 2 < 1 t T U 1 2 P t
26 20 25 spcev 1 2 + 1 2 < 1 t T U 1 2 P t d d + d < 1 t T U d P t
27 12 14 19 26 syl3anc φ T U = d d + d < 1 t T U d P t
28 simplll φ ¬ T U = x T U t T U P T U x P T U t φ
29 simplr φ ¬ T U = x T U t T U P T U x P T U t x T U
30 simpr φ ¬ T U = x T U t T U P T U x P T U t t T U P T U x P T U t
31 eqid J Cn K = J Cn K
32 3 4 31 6 fcnre φ P : T
33 32 adantr φ x T U P : T
34 eldifi x T U x T
35 34 adantl φ x T U x T
36 33 35 ffvelrnd φ x T U P x
37 nfcv _ x T U
38 nfv x 0 < P t
39 nfv t 0 < P x
40 fveq2 t = x P t = P x
41 40 breq2d t = x 0 < P t 0 < P x
42 16 37 38 39 41 cbvralfw t T U 0 < P t x T U 0 < P x
43 42 biimpi t T U 0 < P t x T U 0 < P x
44 43 r19.21bi t T U 0 < P t x T U 0 < P x
45 7 44 sylan φ x T U 0 < P x
46 36 45 elrpd φ x T U P x +
47 46 3adant3 φ x T U t T U P T U x P T U t P x +
48 16 nfcri t x T U
49 nfra1 t t T U P T U x P T U t
50 2 48 49 nf3an t φ x T U t T U P T U x P T U t
51 rspa t T U P T U x P T U t t T U P T U x P T U t
52 51 3ad2antl3 φ x T U t T U P T U x P T U t t T U P T U x P T U t
53 simpl2 φ x T U t T U P T U x P T U t t T U x T U
54 fvres x T U P T U x = P x
55 53 54 syl φ x T U t T U P T U x P T U t t T U P T U x = P x
56 fvres t T U P T U t = P t
57 56 adantl φ x T U t T U P T U x P T U t t T U P T U t = P t
58 52 55 57 3brtr3d φ x T U t T U P T U x P T U t t T U P x P t
59 58 ex φ x T U t T U P T U x P T U t t T U P x P t
60 50 59 ralrimi φ x T U t T U P T U x P T U t t T U P x P t
61 eleq1 c = P x c + P x +
62 breq1 c = P x c P t P x P t
63 62 ralbidv c = P x t T U c P t t T U P x P t
64 61 63 anbi12d c = P x c + t T U c P t P x + t T U P x P t
65 64 spcegv P x + P x + t T U P x P t c c + t T U c P t
66 47 65 syl φ x T U t T U P T U x P T U t P x + t T U P x P t c c + t T U c P t
67 47 60 66 mp2and φ x T U t T U P T U x P T U t c c + t T U c P t
68 simpl1 φ x T U t T U P T U x P T U t c + t T U c P t φ
69 simprl φ x T U t T U P T U x P T U t c + t T U c P t c +
70 simprr φ x T U t T U P T U x P T U t c + t T U c P t t T U c P t
71 nfv t c +
72 nfra1 t t T U c P t
73 2 71 72 nf3an t φ c + t T U c P t
74 eqid if c 1 2 c 1 2 = if c 1 2 c 1 2
75 32 3ad2ant1 φ c + t T U c P t P : T
76 difssd φ c + t T U c P t T U T
77 simp2 φ c + t T U c P t c +
78 simp3 φ c + t T U c P t t T U c P t
79 73 74 75 76 77 78 stoweidlem5 φ c + t T U c P t d d + d < 1 t T U d P t
80 68 69 70 79 syl3anc φ x T U t T U P T U x P T U t c + t T U c P t d d + d < 1 t T U d P t
81 67 80 exlimddv φ x T U t T U P T U x P T U t d d + d < 1 t T U d P t
82 28 29 30 81 syl3anc φ ¬ T U = x T U t T U P T U x P T U t d d + d < 1 t T U d P t
83 eqid J 𝑡 T U = J 𝑡 T U
84 cmptop J Comp J Top
85 5 84 syl φ J Top
86 elssuni U J U J
87 8 86 syl φ U J
88 87 4 sseqtrrdi φ U T
89 4 isopn2 J Top U T U J T U Clsd J
90 85 88 89 syl2anc φ U J T U Clsd J
91 8 90 mpbid φ T U Clsd J
92 cmpcld J Comp T U Clsd J J 𝑡 T U Comp
93 5 91 92 syl2anc φ J 𝑡 T U Comp
94 93 adantr φ ¬ T U = J 𝑡 T U Comp
95 6 adantr φ ¬ T U = P J Cn K
96 difssd φ ¬ T U = T U T
97 4 cnrest P J Cn K T U T P T U J 𝑡 T U Cn K
98 95 96 97 syl2anc φ ¬ T U = P T U J 𝑡 T U Cn K
99 difssd φ T U T
100 4 restuni J Top T U T T U = J 𝑡 T U
101 85 99 100 syl2anc φ T U = J 𝑡 T U
102 101 neeq1d φ T U J 𝑡 T U
103 df-ne T U ¬ T U =
104 102 103 bitr3di φ J 𝑡 T U ¬ T U =
105 104 biimpar φ ¬ T U = J 𝑡 T U
106 83 3 94 98 105 evth2 φ ¬ T U = x J 𝑡 T U s J 𝑡 T U P T U x P T U s
107 nfcv _ s J 𝑡 T U
108 nfcv _ t J
109 nfcv _ t 𝑡
110 108 109 16 nfov _ t J 𝑡 T U
111 110 nfuni _ t J 𝑡 T U
112 nfcv _ t P
113 112 16 nfres _ t P T U
114 nfcv _ t x
115 113 114 nffv _ t P T U x
116 nfcv _ t
117 nfcv _ t s
118 113 117 nffv _ t P T U s
119 115 116 118 nfbr t P T U x P T U s
120 nfv s P T U x P T U t
121 fveq2 s = t P T U s = P T U t
122 121 breq2d s = t P T U x P T U s P T U x P T U t
123 107 111 119 120 122 cbvralfw s J 𝑡 T U P T U x P T U s t J 𝑡 T U P T U x P T U t
124 123 rexbii x J 𝑡 T U s J 𝑡 T U P T U x P T U s x J 𝑡 T U t J 𝑡 T U P T U x P T U t
125 106 124 sylib φ ¬ T U = x J 𝑡 T U t J 𝑡 T U P T U x P T U t
126 16 111 raleqf T U = J 𝑡 T U t T U P T U x P T U t t J 𝑡 T U P T U x P T U t
127 126 rexeqbi1dv T U = J 𝑡 T U x T U t T U P T U x P T U t x J 𝑡 T U t J 𝑡 T U P T U x P T U t
128 101 127 syl φ x T U t T U P T U x P T U t x J 𝑡 T U t J 𝑡 T U P T U x P T U t
129 128 adantr φ ¬ T U = x T U t T U P T U x P T U t x J 𝑡 T U t J 𝑡 T U P T U x P T U t
130 125 129 mpbird φ ¬ T U = x T U t T U P T U x P T U t
131 82 130 r19.29a φ ¬ T U = d d + d < 1 t T U d P t
132 27 131 pm2.61dan φ d d + d < 1 t T U d P t