Metamath Proof Explorer


Theorem stoweidlem3

Description: Lemma for stoweid : if A is positive and all M terms of a finite product are larger than A , then the finite product is larger than A ^ M . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem3.1 _ i F
stoweidlem3.2 i φ
stoweidlem3.3 X = seq 1 × F
stoweidlem3.4 φ M
stoweidlem3.5 φ F : 1 M
stoweidlem3.6 φ i 1 M A < F i
stoweidlem3.7 φ A +
Assertion stoweidlem3 φ A M < X M

Proof

Step Hyp Ref Expression
1 stoweidlem3.1 _ i F
2 stoweidlem3.2 i φ
3 stoweidlem3.3 X = seq 1 × F
4 stoweidlem3.4 φ M
5 stoweidlem3.5 φ F : 1 M
6 stoweidlem3.6 φ i 1 M A < F i
7 stoweidlem3.7 φ A +
8 elnnuz M M 1
9 4 8 sylib φ M 1
10 eluzfz2 M 1 M 1 M
11 9 10 syl φ M 1 M
12 oveq2 n = 1 A n = A 1
13 fveq2 n = 1 X n = X 1
14 12 13 breq12d n = 1 A n < X n A 1 < X 1
15 14 imbi2d n = 1 φ A n < X n φ A 1 < X 1
16 oveq2 n = m A n = A m
17 fveq2 n = m X n = X m
18 16 17 breq12d n = m A n < X n A m < X m
19 18 imbi2d n = m φ A n < X n φ A m < X m
20 oveq2 n = m + 1 A n = A m + 1
21 fveq2 n = m + 1 X n = X m + 1
22 20 21 breq12d n = m + 1 A n < X n A m + 1 < X m + 1
23 22 imbi2d n = m + 1 φ A n < X n φ A m + 1 < X m + 1
24 oveq2 n = M A n = A M
25 fveq2 n = M X n = X M
26 24 25 breq12d n = M A n < X n A M < X M
27 26 imbi2d n = M φ A n < X n φ A M < X M
28 1zzd φ 1
29 4 nnzd φ M
30 1le1 1 1
31 30 a1i φ 1 1
32 4 nnge1d φ 1 M
33 28 29 28 31 32 elfzd φ 1 1 M
34 33 ancli φ φ 1 1 M
35 nfv i 1 1 M
36 2 35 nfan i φ 1 1 M
37 nfcv _ i A
38 nfcv _ i <
39 nfcv _ i 1
40 1 39 nffv _ i F 1
41 37 38 40 nfbr i A < F 1
42 36 41 nfim i φ 1 1 M A < F 1
43 eleq1 i = 1 i 1 M 1 1 M
44 43 anbi2d i = 1 φ i 1 M φ 1 1 M
45 fveq2 i = 1 F i = F 1
46 45 breq2d i = 1 A < F i A < F 1
47 44 46 imbi12d i = 1 φ i 1 M A < F i φ 1 1 M A < F 1
48 42 47 6 vtoclg1f 1 1 M φ 1 1 M A < F 1
49 33 34 48 sylc φ A < F 1
50 7 rpcnd φ A
51 50 exp1d φ A 1 = A
52 3 fveq1i X 1 = seq 1 × F 1
53 1z 1
54 seq1 1 seq 1 × F 1 = F 1
55 53 54 ax-mp seq 1 × F 1 = F 1
56 52 55 eqtri X 1 = F 1
57 56 a1i φ X 1 = F 1
58 49 51 57 3brtr4d φ A 1 < X 1
59 58 a1i M 1 φ A 1 < X 1
60 7 3ad2ant3 m 1 ..^ M φ A m < X m φ A +
61 60 rpred m 1 ..^ M φ A m < X m φ A
62 elfzouz m 1 ..^ M m 1
63 elnnuz m m 1
64 nnnn0 m m 0
65 63 64 sylbir m 1 m 0
66 62 65 syl m 1 ..^ M m 0
67 66 3ad2ant1 m 1 ..^ M φ A m < X m φ m 0
68 61 67 reexpcld m 1 ..^ M φ A m < X m φ A m
69 3 fveq1i X m = seq 1 × F m
70 62 adantr m 1 ..^ M φ m 1
71 nfv i m 1 ..^ M
72 71 2 nfan i m 1 ..^ M φ
73 nfv i a 1 m
74 72 73 nfan i m 1 ..^ M φ a 1 m
75 nfcv _ i a
76 1 75 nffv _ i F a
77 76 nfel1 i F a
78 74 77 nfim i m 1 ..^ M φ a 1 m F a
79 eleq1 i = a i 1 m a 1 m
80 79 anbi2d i = a m 1 ..^ M φ i 1 m m 1 ..^ M φ a 1 m
81 fveq2 i = a F i = F a
82 81 eleq1d i = a F i F a
83 80 82 imbi12d i = a m 1 ..^ M φ i 1 m F i m 1 ..^ M φ a 1 m F a
84 5 ad2antlr m 1 ..^ M φ i 1 m F : 1 M
85 1zzd m 1 ..^ M φ i 1 m 1
86 29 ad2antlr m 1 ..^ M φ i 1 m M
87 elfzelz i 1 m i
88 87 adantl m 1 ..^ M φ i 1 m i
89 elfzle1 i 1 m 1 i
90 89 adantl m 1 ..^ M φ i 1 m 1 i
91 87 zred i 1 m i
92 91 adantl m 1 ..^ M φ i 1 m i
93 elfzoelz m 1 ..^ M m
94 93 zred m 1 ..^ M m
95 94 ad2antrr m 1 ..^ M φ i 1 m m
96 4 nnred φ M
97 96 ad2antlr m 1 ..^ M φ i 1 m M
98 elfzle2 i 1 m i m
99 98 adantl m 1 ..^ M φ i 1 m i m
100 elfzoel2 m 1 ..^ M M
101 100 zred m 1 ..^ M M
102 elfzolt2 m 1 ..^ M m < M
103 94 101 102 ltled m 1 ..^ M m M
104 103 ad2antrr m 1 ..^ M φ i 1 m m M
105 92 95 97 99 104 letrd m 1 ..^ M φ i 1 m i M
106 85 86 88 90 105 elfzd m 1 ..^ M φ i 1 m i 1 M
107 84 106 ffvelrnd m 1 ..^ M φ i 1 m F i
108 78 83 107 chvarfv m 1 ..^ M φ a 1 m F a
109 remulcl a j a j
110 109 adantl m 1 ..^ M φ a j a j
111 70 108 110 seqcl m 1 ..^ M φ seq 1 × F m
112 69 111 eqeltrid m 1 ..^ M φ X m
113 112 3adant2 m 1 ..^ M φ A m < X m φ X m
114 5 3ad2ant3 m 1 ..^ M φ A m < X m φ F : 1 M
115 fzofzp1 m 1 ..^ M m + 1 1 M
116 115 3ad2ant1 m 1 ..^ M φ A m < X m φ m + 1 1 M
117 114 116 ffvelrnd m 1 ..^ M φ A m < X m φ F m + 1
118 7 rpge0d φ 0 A
119 118 3ad2ant3 m 1 ..^ M φ A m < X m φ 0 A
120 61 67 119 expge0d m 1 ..^ M φ A m < X m φ 0 A m
121 simp3 m 1 ..^ M φ A m < X m φ φ
122 simp2 m 1 ..^ M φ A m < X m φ φ A m < X m
123 121 122 mpd m 1 ..^ M φ A m < X m φ A m < X m
124 115 adantr m 1 ..^ M φ m + 1 1 M
125 simpr m 1 ..^ M φ φ
126 125 124 jca m 1 ..^ M φ φ m + 1 1 M
127 nfv i m + 1 1 M
128 2 127 nfan i φ m + 1 1 M
129 nfcv _ i m + 1
130 1 129 nffv _ i F m + 1
131 37 38 130 nfbr i A < F m + 1
132 128 131 nfim i φ m + 1 1 M A < F m + 1
133 eleq1 i = m + 1 i 1 M m + 1 1 M
134 133 anbi2d i = m + 1 φ i 1 M φ m + 1 1 M
135 fveq2 i = m + 1 F i = F m + 1
136 135 breq2d i = m + 1 A < F i A < F m + 1
137 134 136 imbi12d i = m + 1 φ i 1 M A < F i φ m + 1 1 M A < F m + 1
138 132 137 6 vtoclg1f m + 1 1 M φ m + 1 1 M A < F m + 1
139 124 126 138 sylc m 1 ..^ M φ A < F m + 1
140 139 3adant2 m 1 ..^ M φ A m < X m φ A < F m + 1
141 68 113 61 117 120 123 119 140 ltmul12ad m 1 ..^ M φ A m < X m φ A m A < X m F m + 1
142 50 3ad2ant3 m 1 ..^ M φ A m < X m φ A
143 142 67 expp1d m 1 ..^ M φ A m < X m φ A m + 1 = A m A
144 3 fveq1i X m + 1 = seq 1 × F m + 1
145 144 a1i m 1 ..^ M φ A m < X m φ X m + 1 = seq 1 × F m + 1
146 62 3ad2ant1 m 1 ..^ M φ A m < X m φ m 1
147 seqp1 m 1 seq 1 × F m + 1 = seq 1 × F m F m + 1
148 146 147 syl m 1 ..^ M φ A m < X m φ seq 1 × F m + 1 = seq 1 × F m F m + 1
149 69 a1i m 1 ..^ M φ A m < X m φ X m = seq 1 × F m
150 149 eqcomd m 1 ..^ M φ A m < X m φ seq 1 × F m = X m
151 150 oveq1d m 1 ..^ M φ A m < X m φ seq 1 × F m F m + 1 = X m F m + 1
152 145 148 151 3eqtrd m 1 ..^ M φ A m < X m φ X m + 1 = X m F m + 1
153 141 143 152 3brtr4d m 1 ..^ M φ A m < X m φ A m + 1 < X m + 1
154 153 3exp m 1 ..^ M φ A m < X m φ A m + 1 < X m + 1
155 15 19 23 27 59 154 fzind2 M 1 M φ A M < X M
156 11 155 mpcom φ A M < X M