Metamath Proof Explorer


Theorem stoweidlem3

Description: Lemma for stoweid : if A is positive and all M terms of a finite product are larger than A , then the finite product is larger than A^M. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem3.1 _ i F
stoweidlem3.2 i φ
stoweidlem3.3 X = seq 1 × F
stoweidlem3.4 φ M
stoweidlem3.5 φ F : 1 M
stoweidlem3.6 φ i 1 M A < F i
stoweidlem3.7 φ A +
Assertion stoweidlem3 φ A M < X M

Proof

Step Hyp Ref Expression
1 stoweidlem3.1 _ i F
2 stoweidlem3.2 i φ
3 stoweidlem3.3 X = seq 1 × F
4 stoweidlem3.4 φ M
5 stoweidlem3.5 φ F : 1 M
6 stoweidlem3.6 φ i 1 M A < F i
7 stoweidlem3.7 φ A +
8 elnnuz M M 1
9 4 8 sylib φ M 1
10 eluzfz2 M 1 M 1 M
11 9 10 syl φ M 1 M
12 oveq2 n = 1 A n = A 1
13 fveq2 n = 1 X n = X 1
14 12 13 breq12d n = 1 A n < X n A 1 < X 1
15 14 imbi2d n = 1 φ A n < X n φ A 1 < X 1
16 oveq2 n = m A n = A m
17 fveq2 n = m X n = X m
18 16 17 breq12d n = m A n < X n A m < X m
19 18 imbi2d n = m φ A n < X n φ A m < X m
20 oveq2 n = m + 1 A n = A m + 1
21 fveq2 n = m + 1 X n = X m + 1
22 20 21 breq12d n = m + 1 A n < X n A m + 1 < X m + 1
23 22 imbi2d n = m + 1 φ A n < X n φ A m + 1 < X m + 1
24 oveq2 n = M A n = A M
25 fveq2 n = M X n = X M
26 24 25 breq12d n = M A n < X n A M < X M
27 26 imbi2d n = M φ A n < X n φ A M < X M
28 1zzd φ 1
29 4 nnzd φ M
30 28 29 28 3jca φ 1 M 1
31 1le1 1 1
32 31 a1i φ 1 1
33 4 nnge1d φ 1 M
34 30 32 33 jca32 φ 1 M 1 1 1 1 M
35 elfz2 1 1 M 1 M 1 1 1 1 M
36 34 35 sylibr φ 1 1 M
37 36 ancli φ φ 1 1 M
38 nfv i 1 1 M
39 2 38 nfan i φ 1 1 M
40 nfcv _ i A
41 nfcv _ i <
42 nfcv _ i 1
43 1 42 nffv _ i F 1
44 40 41 43 nfbr i A < F 1
45 39 44 nfim i φ 1 1 M A < F 1
46 eleq1 i = 1 i 1 M 1 1 M
47 46 anbi2d i = 1 φ i 1 M φ 1 1 M
48 fveq2 i = 1 F i = F 1
49 48 breq2d i = 1 A < F i A < F 1
50 47 49 imbi12d i = 1 φ i 1 M A < F i φ 1 1 M A < F 1
51 45 50 6 vtoclg1f 1 1 M φ 1 1 M A < F 1
52 36 37 51 sylc φ A < F 1
53 7 rpcnd φ A
54 53 exp1d φ A 1 = A
55 3 fveq1i X 1 = seq 1 × F 1
56 1z 1
57 seq1 1 seq 1 × F 1 = F 1
58 56 57 ax-mp seq 1 × F 1 = F 1
59 55 58 eqtri X 1 = F 1
60 59 a1i φ X 1 = F 1
61 52 54 60 3brtr4d φ A 1 < X 1
62 61 a1i M 1 φ A 1 < X 1
63 7 3ad2ant3 m 1 ..^ M φ A m < X m φ A +
64 63 rpred m 1 ..^ M φ A m < X m φ A
65 elfzouz m 1 ..^ M m 1
66 elnnuz m m 1
67 nnnn0 m m 0
68 66 67 sylbir m 1 m 0
69 65 68 syl m 1 ..^ M m 0
70 69 3ad2ant1 m 1 ..^ M φ A m < X m φ m 0
71 64 70 reexpcld m 1 ..^ M φ A m < X m φ A m
72 3 fveq1i X m = seq 1 × F m
73 65 adantr m 1 ..^ M φ m 1
74 nfv i m 1 ..^ M
75 74 2 nfan i m 1 ..^ M φ
76 nfv i a 1 m
77 75 76 nfan i m 1 ..^ M φ a 1 m
78 nfcv _ i a
79 1 78 nffv _ i F a
80 79 nfel1 i F a
81 77 80 nfim i m 1 ..^ M φ a 1 m F a
82 eleq1 i = a i 1 m a 1 m
83 82 anbi2d i = a m 1 ..^ M φ i 1 m m 1 ..^ M φ a 1 m
84 fveq2 i = a F i = F a
85 84 eleq1d i = a F i F a
86 83 85 imbi12d i = a m 1 ..^ M φ i 1 m F i m 1 ..^ M φ a 1 m F a
87 5 ad2antlr m 1 ..^ M φ i 1 m F : 1 M
88 1zzd m 1 ..^ M φ i 1 m 1
89 29 ad2antlr m 1 ..^ M φ i 1 m M
90 elfzelz i 1 m i
91 90 adantl m 1 ..^ M φ i 1 m i
92 88 89 91 3jca m 1 ..^ M φ i 1 m 1 M i
93 elfzle1 i 1 m 1 i
94 93 adantl m 1 ..^ M φ i 1 m 1 i
95 90 zred i 1 m i
96 95 adantl m 1 ..^ M φ i 1 m i
97 elfzoelz m 1 ..^ M m
98 97 zred m 1 ..^ M m
99 98 ad2antrr m 1 ..^ M φ i 1 m m
100 4 nnred φ M
101 100 ad2antlr m 1 ..^ M φ i 1 m M
102 elfzle2 i 1 m i m
103 102 adantl m 1 ..^ M φ i 1 m i m
104 elfzoel2 m 1 ..^ M M
105 104 zred m 1 ..^ M M
106 elfzolt2 m 1 ..^ M m < M
107 98 105 106 ltled m 1 ..^ M m M
108 107 ad2antrr m 1 ..^ M φ i 1 m m M
109 96 99 101 103 108 letrd m 1 ..^ M φ i 1 m i M
110 92 94 109 jca32 m 1 ..^ M φ i 1 m 1 M i 1 i i M
111 elfz2 i 1 M 1 M i 1 i i M
112 110 111 sylibr m 1 ..^ M φ i 1 m i 1 M
113 87 112 ffvelrnd m 1 ..^ M φ i 1 m F i
114 81 86 113 chvarfv m 1 ..^ M φ a 1 m F a
115 remulcl a j a j
116 115 adantl m 1 ..^ M φ a j a j
117 73 114 116 seqcl m 1 ..^ M φ seq 1 × F m
118 72 117 eqeltrid m 1 ..^ M φ X m
119 118 3adant2 m 1 ..^ M φ A m < X m φ X m
120 5 3ad2ant3 m 1 ..^ M φ A m < X m φ F : 1 M
121 fzofzp1 m 1 ..^ M m + 1 1 M
122 121 3ad2ant1 m 1 ..^ M φ A m < X m φ m + 1 1 M
123 120 122 ffvelrnd m 1 ..^ M φ A m < X m φ F m + 1
124 7 rpge0d φ 0 A
125 124 3ad2ant3 m 1 ..^ M φ A m < X m φ 0 A
126 64 70 125 expge0d m 1 ..^ M φ A m < X m φ 0 A m
127 simp3 m 1 ..^ M φ A m < X m φ φ
128 simp2 m 1 ..^ M φ A m < X m φ φ A m < X m
129 127 128 mpd m 1 ..^ M φ A m < X m φ A m < X m
130 121 adantr m 1 ..^ M φ m + 1 1 M
131 simpr m 1 ..^ M φ φ
132 131 130 jca m 1 ..^ M φ φ m + 1 1 M
133 nfv i m + 1 1 M
134 2 133 nfan i φ m + 1 1 M
135 nfcv _ i m + 1
136 1 135 nffv _ i F m + 1
137 40 41 136 nfbr i A < F m + 1
138 134 137 nfim i φ m + 1 1 M A < F m + 1
139 eleq1 i = m + 1 i 1 M m + 1 1 M
140 139 anbi2d i = m + 1 φ i 1 M φ m + 1 1 M
141 fveq2 i = m + 1 F i = F m + 1
142 141 breq2d i = m + 1 A < F i A < F m + 1
143 140 142 imbi12d i = m + 1 φ i 1 M A < F i φ m + 1 1 M A < F m + 1
144 138 143 6 vtoclg1f m + 1 1 M φ m + 1 1 M A < F m + 1
145 130 132 144 sylc m 1 ..^ M φ A < F m + 1
146 145 3adant2 m 1 ..^ M φ A m < X m φ A < F m + 1
147 71 119 64 123 126 129 125 146 ltmul12ad m 1 ..^ M φ A m < X m φ A m A < X m F m + 1
148 53 3ad2ant3 m 1 ..^ M φ A m < X m φ A
149 148 70 expp1d m 1 ..^ M φ A m < X m φ A m + 1 = A m A
150 3 fveq1i X m + 1 = seq 1 × F m + 1
151 150 a1i m 1 ..^ M φ A m < X m φ X m + 1 = seq 1 × F m + 1
152 65 3ad2ant1 m 1 ..^ M φ A m < X m φ m 1
153 seqp1 m 1 seq 1 × F m + 1 = seq 1 × F m F m + 1
154 152 153 syl m 1 ..^ M φ A m < X m φ seq 1 × F m + 1 = seq 1 × F m F m + 1
155 72 a1i m 1 ..^ M φ A m < X m φ X m = seq 1 × F m
156 155 eqcomd m 1 ..^ M φ A m < X m φ seq 1 × F m = X m
157 156 oveq1d m 1 ..^ M φ A m < X m φ seq 1 × F m F m + 1 = X m F m + 1
158 151 154 157 3eqtrd m 1 ..^ M φ A m < X m φ X m + 1 = X m F m + 1
159 147 149 158 3brtr4d m 1 ..^ M φ A m < X m φ A m + 1 < X m + 1
160 159 3exp m 1 ..^ M φ A m < X m φ A m + 1 < X m + 1
161 15 19 23 27 62 160 fzind2 M 1 M φ A M < X M
162 11 161 mpcom φ A M < X M