Metamath Proof Explorer


Theorem stoweidlem30

Description: This lemma is used to prove the existence of a function p as in Lemma 1 BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem30.1 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem30.2 P = t T 1 M i = 1 M G i t
stoweidlem30.3 φ M
stoweidlem30.4 φ G : 1 M Q
stoweidlem30.5 φ f A f : T
Assertion stoweidlem30 φ S T P S = 1 M i = 1 M G i S

Proof

Step Hyp Ref Expression
1 stoweidlem30.1 Q = h A | h Z = 0 t T 0 h t h t 1
2 stoweidlem30.2 P = t T 1 M i = 1 M G i t
3 stoweidlem30.3 φ M
4 stoweidlem30.4 φ G : 1 M Q
5 stoweidlem30.5 φ f A f : T
6 eleq1 s = S s T S T
7 6 anbi2d s = S φ s T φ S T
8 fveq2 s = S P s = P S
9 fveq2 s = S G i s = G i S
10 9 sumeq2sdv s = S i = 1 M G i s = i = 1 M G i S
11 10 oveq2d s = S 1 M i = 1 M G i s = 1 M i = 1 M G i S
12 8 11 eqeq12d s = S P s = 1 M i = 1 M G i s P S = 1 M i = 1 M G i S
13 7 12 imbi12d s = S φ s T P s = 1 M i = 1 M G i s φ S T P S = 1 M i = 1 M G i S
14 fveq2 t = s G i t = G i s
15 14 sumeq2sdv t = s i = 1 M G i t = i = 1 M G i s
16 15 oveq2d t = s 1 M i = 1 M G i t = 1 M i = 1 M G i s
17 simpr φ s T s T
18 3 nnrecred φ 1 M
19 18 adantr φ s T 1 M
20 fzfid φ s T 1 M Fin
21 1 4 5 stoweidlem15 φ i 1 M s T G i s 0 G i s G i s 1
22 21 simp1d φ i 1 M s T G i s
23 22 an32s φ s T i 1 M G i s
24 20 23 fsumrecl φ s T i = 1 M G i s
25 19 24 remulcld φ s T 1 M i = 1 M G i s
26 2 16 17 25 fvmptd3 φ s T P s = 1 M i = 1 M G i s
27 13 26 vtoclg S T φ S T P S = 1 M i = 1 M G i S
28 27 anabsi7 φ S T P S = 1 M i = 1 M G i S