Metamath Proof Explorer


Theorem stoweidlem33

Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem33.1 _ t F
stoweidlem33.2 _ t G
stoweidlem33.3 t φ
stoweidlem33.4 φ f A f : T
stoweidlem33.5 φ f A g A t T f t + g t A
stoweidlem33.6 φ f A g A t T f t g t A
stoweidlem33.7 φ x t T x A
Assertion stoweidlem33 φ F A G A t T F t G t A

Proof

Step Hyp Ref Expression
1 stoweidlem33.1 _ t F
2 stoweidlem33.2 _ t G
3 stoweidlem33.3 t φ
4 stoweidlem33.4 φ f A f : T
5 stoweidlem33.5 φ f A g A t T f t + g t A
6 stoweidlem33.6 φ f A g A t T f t g t A
7 stoweidlem33.7 φ x t T x A
8 eqid t T F t G t = t T F t G t
9 eqid t T 1 = t T 1
10 eqid t T t T 1 t G t = t T t T 1 t G t
11 3 1 2 8 9 10 4 5 6 7 stoweidlem22 φ F A G A t T F t G t A