Metamath Proof Explorer


Theorem stoweidlem34

Description: This lemma proves that for all t in T there is a j as in the proof of BrosowskiDeutsh p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem34.1 _ t F
stoweidlem34.2 j φ
stoweidlem34.3 t φ
stoweidlem34.4 D = j 0 N t T | F t j 1 3 E
stoweidlem34.5 B = j 0 N t T | j + 1 3 E F t
stoweidlem34.6 J = t T j 1 N | t D j
stoweidlem34.7 φ N
stoweidlem34.8 φ T V
stoweidlem34.9 φ F : T
stoweidlem34.10 φ t T 0 F t
stoweidlem34.11 φ t T F t < N 1 E
stoweidlem34.12 φ E +
stoweidlem34.13 φ E < 1 3
stoweidlem34.14 φ j 0 N X j : T
stoweidlem34.15 φ j 0 N t T 0 X j t
stoweidlem34.16 φ j 0 N t T X j t 1
stoweidlem34.17 φ j 0 N t D j X j t < E N
stoweidlem34.18 φ j 0 N t B j 1 E N < X j t
Assertion stoweidlem34 φ t T j j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t

Proof

Step Hyp Ref Expression
1 stoweidlem34.1 _ t F
2 stoweidlem34.2 j φ
3 stoweidlem34.3 t φ
4 stoweidlem34.4 D = j 0 N t T | F t j 1 3 E
5 stoweidlem34.5 B = j 0 N t T | j + 1 3 E F t
6 stoweidlem34.6 J = t T j 1 N | t D j
7 stoweidlem34.7 φ N
8 stoweidlem34.8 φ T V
9 stoweidlem34.9 φ F : T
10 stoweidlem34.10 φ t T 0 F t
11 stoweidlem34.11 φ t T F t < N 1 E
12 stoweidlem34.12 φ E +
13 stoweidlem34.13 φ E < 1 3
14 stoweidlem34.14 φ j 0 N X j : T
15 stoweidlem34.15 φ j 0 N t T 0 X j t
16 stoweidlem34.16 φ j 0 N t T X j t 1
17 stoweidlem34.17 φ j 0 N t D j X j t < E N
18 stoweidlem34.18 φ j 0 N t B j 1 E N < X j t
19 simpr φ t T t T
20 ovex 1 N V
21 20 rabex j 1 N | t D j V
22 6 fvmpt2 t T j 1 N | t D j V J t = j 1 N | t D j
23 19 21 22 sylancl φ t T J t = j 1 N | t D j
24 ssrab2 j 1 N | t D j 1 N
25 23 24 eqsstrdi φ t T J t 1 N
26 elfznn x 1 N x
27 26 ssriv 1 N
28 25 27 sstrdi φ t T J t
29 nnssre
30 28 29 sstrdi φ t T J t
31 7 adantr φ t T N
32 nnuz = 1
33 31 32 eleqtrdi φ t T N 1
34 eluzfz2 N 1 N 1 N
35 33 34 syl φ t T N 1 N
36 3re 3
37 3ne0 3 0
38 36 37 rereccli 1 3
39 38 a1i φ t T 1 3
40 1red φ t T 1
41 31 nnred φ t T N
42 1lt3 1 < 3
43 36 42 pm3.2i 3 1 < 3
44 recgt1i 3 1 < 3 0 < 1 3 1 3 < 1
45 44 simprd 3 1 < 3 1 3 < 1
46 43 45 mp1i φ t T 1 3 < 1
47 39 40 41 46 ltsub2dd φ t T N 1 < N 1 3
48 41 40 resubcld φ t T N 1
49 41 39 resubcld φ t T N 1 3
50 12 rpred φ E
51 50 adantr φ t T E
52 12 rpgt0d φ 0 < E
53 52 adantr φ t T 0 < E
54 ltmul1 N 1 N 1 3 E 0 < E N 1 < N 1 3 N 1 E < N 1 3 E
55 48 49 51 53 54 syl112anc φ t T N 1 < N 1 3 N 1 E < N 1 3 E
56 47 55 mpbid φ t T N 1 E < N 1 3 E
57 11 56 jca φ t T F t < N 1 E N 1 E < N 1 3 E
58 9 ffvelrnda φ t T F t
59 48 51 remulcld φ t T N 1 E
60 49 51 remulcld φ t T N 1 3 E
61 lttr F t N 1 E N 1 3 E F t < N 1 E N 1 E < N 1 3 E F t < N 1 3 E
62 ltle F t N 1 3 E F t < N 1 3 E F t N 1 3 E
63 62 3adant2 F t N 1 E N 1 3 E F t < N 1 3 E F t N 1 3 E
64 61 63 syld F t N 1 E N 1 3 E F t < N 1 E N 1 E < N 1 3 E F t N 1 3 E
65 58 59 60 64 syl3anc φ t T F t < N 1 E N 1 E < N 1 3 E F t N 1 3 E
66 57 65 mpd φ t T F t N 1 3 E
67 rabid t t T | F t N 1 3 E t T F t N 1 3 E
68 19 66 67 sylanbrc φ t T t t T | F t N 1 3 E
69 oveq1 j = N j 1 3 = N 1 3
70 69 oveq1d j = N j 1 3 E = N 1 3 E
71 70 breq2d j = N F t j 1 3 E F t N 1 3 E
72 71 rabbidv j = N t T | F t j 1 3 E = t T | F t N 1 3 E
73 nnnn0 N N 0
74 nn0uz 0 = 0
75 73 74 eleqtrdi N N 0
76 eluzfz2 N 0 N 0 N
77 7 75 76 3syl φ N 0 N
78 rabexg T V t T | F t N 1 3 E V
79 8 78 syl φ t T | F t N 1 3 E V
80 4 72 77 79 fvmptd3 φ D N = t T | F t N 1 3 E
81 80 adantr φ t T D N = t T | F t N 1 3 E
82 68 81 eleqtrrd φ t T t D N
83 nfcv _ j N
84 nfcv _ j 1 N
85 nfmpt1 _ j j 0 N t T | F t j 1 3 E
86 4 85 nfcxfr _ j D
87 86 83 nffv _ j D N
88 87 nfcri j t D N
89 fveq2 j = N D j = D N
90 89 eleq2d j = N t D j t D N
91 83 84 88 90 elrabf N j 1 N | t D j N 1 N t D N
92 35 82 91 sylanbrc φ t T N j 1 N | t D j
93 92 23 eleqtrrd φ t T N J t
94 ne0i N J t J t
95 93 94 syl φ t T J t
96 nnwo J t J t i J t k J t i k
97 nfcv _ i J t
98 nfcv _ j T
99 nfrab1 _ j j 1 N | t D j
100 98 99 nfmpt _ j t T j 1 N | t D j
101 6 100 nfcxfr _ j J
102 nfcv _ j t
103 101 102 nffv _ j J t
104 nfv j i k
105 103 104 nfralw j k J t i k
106 nfv i k J t j k
107 breq1 i = j i k j k
108 107 ralbidv i = j k J t i k k J t j k
109 97 103 105 106 108 cbvrexfw i J t k J t i k j J t k J t j k
110 96 109 sylib J t J t j J t k J t j k
111 28 95 110 syl2anc φ t T j J t k J t j k
112 nfv j t T
113 2 112 nfan j φ t T
114 23 eleq2d φ t T j J t j j 1 N | t D j
115 114 biimpa φ t T j J t j j 1 N | t D j
116 rabid j j 1 N | t D j j 1 N t D j
117 115 116 sylib φ t T j J t j 1 N t D j
118 117 simprd φ t T j J t t D j
119 118 adantr φ t T j J t k J t j k t D j
120 simp3 φ t T j J t t D j 1 t D j 1
121 simp1l φ t T j J t t D j 1 φ
122 noel ¬ t
123 oveq1 j = 1 j 1 = 1 1
124 1m1e0 1 1 = 0
125 123 124 eqtrdi j = 1 j 1 = 0
126 125 fveq2d j = 1 D j 1 = D 0
127 36 a1i φ t T 3
128 37 a1i φ t T 3 0
129 40 127 128 redivcld φ t T 1 3
130 129 renegcld φ t T 1 3
131 130 51 remulcld φ t T 1 3 E
132 0red φ t T 0
133 3pos 0 < 3
134 36 133 recgt0ii 0 < 1 3
135 lt0neg2 1 3 0 < 1 3 1 3 < 0
136 38 135 ax-mp 0 < 1 3 1 3 < 0
137 134 136 mpbi 1 3 < 0
138 ltmul1 1 3 0 E 0 < E 1 3 < 0 1 3 E < 0 E
139 130 132 51 53 138 syl112anc φ t T 1 3 < 0 1 3 E < 0 E
140 137 139 mpbii φ t T 1 3 E < 0 E
141 mul02lem2 E 0 E = 0
142 51 141 syl φ t T 0 E = 0
143 140 142 breqtrd φ t T 1 3 E < 0
144 131 132 58 143 10 ltletrd φ t T 1 3 E < F t
145 131 58 ltnled φ t T 1 3 E < F t ¬ F t 1 3 E
146 144 145 mpbid φ t T ¬ F t 1 3 E
147 nan φ ¬ t T F t 1 3 E φ t T ¬ F t 1 3 E
148 146 147 mpbir φ ¬ t T F t 1 3 E
149 rabid t t T | F t 1 3 E t T F t 1 3 E
150 148 149 sylnibr φ ¬ t t T | F t 1 3 E
151 oveq1 j = 0 j 1 3 = 0 1 3
152 df-neg 1 3 = 0 1 3
153 151 152 eqtr4di j = 0 j 1 3 = 1 3
154 153 oveq1d j = 0 j 1 3 E = 1 3 E
155 154 breq2d j = 0 F t j 1 3 E F t 1 3 E
156 155 rabbidv j = 0 t T | F t j 1 3 E = t T | F t 1 3 E
157 7 nnnn0d φ N 0
158 elnn0uz N 0 N 0
159 157 158 sylib φ N 0
160 eluzfz1 N 0 0 0 N
161 159 160 syl φ 0 0 N
162 rabexg T V t T | F t 1 3 E V
163 8 162 syl φ t T | F t 1 3 E V
164 4 156 161 163 fvmptd3 φ D 0 = t T | F t 1 3 E
165 150 164 neleqtrrd φ ¬ t D 0
166 3 165 alrimi φ t ¬ t D 0
167 nfcv _ t 0 N
168 nfrab1 _ t t T | F t j 1 3 E
169 167 168 nfmpt _ t j 0 N t T | F t j 1 3 E
170 4 169 nfcxfr _ t D
171 nfcv _ t 0
172 170 171 nffv _ t D 0
173 172 eq0f D 0 = t ¬ t D 0
174 166 173 sylibr φ D 0 =
175 126 174 sylan9eqr φ j = 1 D j 1 =
176 175 eleq2d φ j = 1 t D j 1 t
177 122 176 mtbiri φ j = 1 ¬ t D j 1
178 177 ex φ j = 1 ¬ t D j 1
179 178 con2d φ t D j 1 ¬ j = 1
180 121 120 179 sylc φ t T j J t t D j 1 ¬ j = 1
181 simplll φ t T j J t ¬ j = 1 φ
182 114 116 bitrdi φ t T j J t j 1 N t D j
183 182 simprbda φ t T j J t j 1 N
184 7 32 eleqtrdi φ N 1
185 184 adantr φ j J t N 1
186 elfzp12 N 1 j 1 N j = 1 j 1 + 1 N
187 185 186 syl φ j J t j 1 N j = 1 j 1 + 1 N
188 187 adantlr φ t T j J t j 1 N j = 1 j 1 + 1 N
189 183 188 mpbid φ t T j J t j = 1 j 1 + 1 N
190 189 orcanai φ t T j J t ¬ j = 1 j 1 + 1 N
191 fzssp1 1 N 1 1 N - 1 + 1
192 7 nncnd φ N
193 1cnd φ 1
194 192 193 npcand φ N - 1 + 1 = N
195 194 oveq2d φ 1 N - 1 + 1 = 1 N
196 191 195 sseqtrid φ 1 N 1 1 N
197 196 adantr φ j 1 + 1 N 1 N 1 1 N
198 simpr φ j 1 + 1 N j 1 + 1 N
199 1z 1
200 zaddcl 1 1 1 + 1
201 199 199 200 mp2an 1 + 1
202 201 a1i φ j 1 + 1 N 1 + 1
203 7 nnzd φ N
204 203 adantr φ j 1 + 1 N N
205 elfzelz j 1 + 1 N j
206 205 adantl φ j 1 + 1 N j
207 1zzd φ j 1 + 1 N 1
208 fzsubel 1 + 1 N j 1 j 1 + 1 N j 1 1 + 1 - 1 N 1
209 202 204 206 207 208 syl22anc φ j 1 + 1 N j 1 + 1 N j 1 1 + 1 - 1 N 1
210 198 209 mpbid φ j 1 + 1 N j 1 1 + 1 - 1 N 1
211 ax-1cn 1
212 211 211 pncan3oi 1 + 1 - 1 = 1
213 212 oveq1i 1 + 1 - 1 N 1 = 1 N 1
214 210 213 eleqtrdi φ j 1 + 1 N j 1 1 N 1
215 197 214 sseldd φ j 1 + 1 N j 1 1 N
216 181 190 215 syl2anc φ t T j J t ¬ j = 1 j 1 1 N
217 216 ex φ t T j J t ¬ j = 1 j 1 1 N
218 217 3adant3 φ t T j J t t D j 1 ¬ j = 1 j 1 1 N
219 180 218 mpd φ t T j J t t D j 1 j 1 1 N
220 fveq2 i = j 1 D i = D j 1
221 220 eleq2d i = j 1 t D i t D j 1
222 221 elrab3 j 1 1 N j 1 i 1 N | t D i t D j 1
223 219 222 syl φ t T j J t t D j 1 j 1 i 1 N | t D i t D j 1
224 120 223 mpbird φ t T j J t t D j 1 j 1 i 1 N | t D i
225 nfcv _ i 1 N
226 nfv i t D j
227 nfcv _ j i
228 86 227 nffv _ j D i
229 228 nfcri j t D i
230 fveq2 j = i D j = D i
231 230 eleq2d j = i t D j t D i
232 84 225 226 229 231 cbvrabw j 1 N | t D j = i 1 N | t D i
233 224 232 eleqtrrdi φ t T j J t t D j 1 j 1 j 1 N | t D j
234 23 3ad2ant1 φ t T j J t t D j 1 J t = j 1 N | t D j
235 233 234 eleqtrrd φ t T j J t t D j 1 j 1 J t
236 elfzelz j 1 N j
237 zre j j
238 183 236 237 3syl φ t T j J t j
239 238 3adant3 φ t T j J t t D j 1 j
240 peano2rem j j 1
241 ltm1 j j 1 < j
242 241 adantr j j 1 j 1 < j
243 ltnle j 1 j j 1 < j ¬ j j 1
244 243 ancoms j j 1 j 1 < j ¬ j j 1
245 242 244 mpbid j j 1 ¬ j j 1
246 239 240 245 syl2anc2 φ t T j J t t D j 1 ¬ j j 1
247 breq2 k = j 1 j k j j 1
248 247 notbid k = j 1 ¬ j k ¬ j j 1
249 248 rspcev j 1 J t ¬ j j 1 k J t ¬ j k
250 235 246 249 syl2anc φ t T j J t t D j 1 k J t ¬ j k
251 rexnal k J t ¬ j k ¬ k J t j k
252 250 251 sylib φ t T j J t t D j 1 ¬ k J t j k
253 252 3expia φ t T j J t t D j 1 ¬ k J t j k
254 253 con2d φ t T j J t k J t j k ¬ t D j 1
255 254 imp φ t T j J t k J t j k ¬ t D j 1
256 119 255 eldifd φ t T j J t k J t j k t D j D j 1
257 256 exp31 φ t T j J t k J t j k t D j D j 1
258 113 257 reximdai φ t T j J t k J t j k j J t t D j D j 1
259 111 258 mpd φ t T j J t t D j D j 1
260 df-rex j J t t D j D j 1 j j J t t D j D j 1
261 259 260 sylib φ t T j j J t t D j D j 1
262 simprl φ t T j J t t D j D j 1 j J t
263 eldifn t D j D j 1 ¬ t D j 1
264 simplr φ t T j J t ¬ t D j 1 t T
265 simpll φ t T j J t ¬ t D j 1 φ
266 183 adantrr φ t T j J t ¬ t D j 1 j 1 N
267 simprr φ t T j J t ¬ t D j 1 ¬ t D j 1
268 oveq1 j = k j 1 3 = k 1 3
269 268 oveq1d j = k j 1 3 E = k 1 3 E
270 269 breq2d j = k F t j 1 3 E F t k 1 3 E
271 270 rabbidv j = k t T | F t j 1 3 E = t T | F t k 1 3 E
272 271 cbvmptv j 0 N t T | F t j 1 3 E = k 0 N t T | F t k 1 3 E
273 4 272 eqtri D = k 0 N t T | F t k 1 3 E
274 oveq1 k = j 1 k 1 3 = j - 1 - 1 3
275 274 oveq1d k = j 1 k 1 3 E = j - 1 - 1 3 E
276 275 breq2d k = j 1 F t k 1 3 E F t j - 1 - 1 3 E
277 276 rabbidv k = j 1 t T | F t k 1 3 E = t T | F t j - 1 - 1 3 E
278 fzssp1 0 N 1 0 N - 1 + 1
279 194 oveq2d φ 0 N - 1 + 1 = 0 N
280 278 279 sseqtrid φ 0 N 1 0 N
281 280 adantr φ j 1 N 0 N 1 0 N
282 simpr φ j 1 N j 1 N
283 1zzd φ j 1 N 1
284 203 adantr φ j 1 N N
285 236 adantl φ j 1 N j
286 fzsubel 1 N j 1 j 1 N j 1 1 1 N 1
287 283 284 285 283 286 syl22anc φ j 1 N j 1 N j 1 1 1 N 1
288 282 287 mpbid φ j 1 N j 1 1 1 N 1
289 124 a1i φ j 1 N 1 1 = 0
290 289 oveq1d φ j 1 N 1 1 N 1 = 0 N 1
291 288 290 eleqtrd φ j 1 N j 1 0 N 1
292 281 291 sseldd φ j 1 N j 1 0 N
293 8 adantr φ j 1 N T V
294 rabexg T V t T | F t j - 1 - 1 3 E V
295 293 294 syl φ j 1 N t T | F t j - 1 - 1 3 E V
296 273 277 292 295 fvmptd3 φ j 1 N D j 1 = t T | F t j - 1 - 1 3 E
297 296 eleq2d φ j 1 N t D j 1 t t T | F t j - 1 - 1 3 E
298 297 notbid φ j 1 N ¬ t D j 1 ¬ t t T | F t j - 1 - 1 3 E
299 298 biimpa φ j 1 N ¬ t D j 1 ¬ t t T | F t j - 1 - 1 3 E
300 265 266 267 299 syl21anc φ t T j J t ¬ t D j 1 ¬ t t T | F t j - 1 - 1 3 E
301 rabid t t T | F t j - 1 - 1 3 E t T F t j - 1 - 1 3 E
302 238 adantrr φ t T j J t ¬ t D j 1 j
303 recn j j
304 1cnd j 1
305 1re 1
306 305 36 37 3pm3.2i 1 3 3 0
307 redivcl 1 3 3 0 1 3
308 recn 1 3 1 3
309 306 307 308 mp2b 1 3
310 309 a1i j 1 3
311 303 304 310 subsub4d j j - 1 - 1 3 = j 1 + 1 3
312 3cn 3
313 312 211 312 37 divdiri 3 + 1 3 = 3 3 + 1 3
314 3p1e4 3 + 1 = 4
315 314 oveq1i 3 + 1 3 = 4 3
316 312 37 dividi 3 3 = 1
317 316 oveq1i 3 3 + 1 3 = 1 + 1 3
318 313 315 317 3eqtr3i 4 3 = 1 + 1 3
319 318 a1i j 4 3 = 1 + 1 3
320 319 oveq2d j j 4 3 = j 1 + 1 3
321 311 320 eqtr4d j j - 1 - 1 3 = j 4 3
322 321 oveq1d j j - 1 - 1 3 E = j 4 3 E
323 302 322 syl φ t T j J t ¬ t D j 1 j - 1 - 1 3 E = j 4 3 E
324 323 breq2d φ t T j J t ¬ t D j 1 F t j - 1 - 1 3 E F t j 4 3 E
325 324 anbi2d φ t T j J t ¬ t D j 1 t T F t j - 1 - 1 3 E t T F t j 4 3 E
326 301 325 syl5bb φ t T j J t ¬ t D j 1 t t T | F t j - 1 - 1 3 E t T F t j 4 3 E
327 300 326 mtbid φ t T j J t ¬ t D j 1 ¬ t T F t j 4 3 E
328 imnan t T ¬ F t j 4 3 E ¬ t T F t j 4 3 E
329 327 328 sylibr φ t T j J t ¬ t D j 1 t T ¬ F t j 4 3 E
330 264 329 mpd φ t T j J t ¬ t D j 1 ¬ F t j 4 3 E
331 263 330 sylanr2 φ t T j J t t D j D j 1 ¬ F t j 4 3 E
332 238 adantrr φ t T j J t t D j D j 1 j
333 4re 4
334 333 a1i φ t T j J t t D j D j 1 4
335 36 a1i φ t T j J t t D j D j 1 3
336 37 a1i φ t T j J t t D j D j 1 3 0
337 334 335 336 redivcld φ t T j J t t D j D j 1 4 3
338 332 337 resubcld φ t T j J t t D j D j 1 j 4 3
339 50 ad2antrr φ t T j J t t D j D j 1 E
340 remulcl j 4 3 E j 4 3 E
341 340 rexrd j 4 3 E j 4 3 E *
342 338 339 341 syl2anc φ t T j J t t D j D j 1 j 4 3 E *
343 58 rexrd φ t T F t *
344 343 adantr φ t T j J t t D j D j 1 F t *
345 xrltnle j 4 3 E * F t * j 4 3 E < F t ¬ F t j 4 3 E
346 342 344 345 syl2anc φ t T j J t t D j D j 1 j 4 3 E < F t ¬ F t j 4 3 E
347 331 346 mpbird φ t T j J t t D j D j 1 j 4 3 E < F t
348 simpl φ t T j J t t D j D j 1 φ t T
349 simprr φ t T j J t t D j D j 1 t D j D j 1
350 349 eldifad φ t T j J t t D j D j 1 t D j
351 simplll φ t T j J t t D j φ
352 183 adantr φ t T j J t t D j j 1 N
353 simpr φ t T j J t t D j t D j
354 oveq1 k = j k 1 3 = j 1 3
355 354 oveq1d k = j k 1 3 E = j 1 3 E
356 355 breq2d k = j F t k 1 3 E F t j 1 3 E
357 356 rabbidv k = j t T | F t k 1 3 E = t T | F t j 1 3 E
358 fz1ssfz0 1 N 0 N
359 358 sseli j 1 N j 0 N
360 359 adantl φ j 1 N j 0 N
361 rabexg T V t T | F t j 1 3 E V
362 293 361 syl φ j 1 N t T | F t j 1 3 E V
363 273 357 360 362 fvmptd3 φ j 1 N D j = t T | F t j 1 3 E
364 363 eleq2d φ j 1 N t D j t t T | F t j 1 3 E
365 364 biimpa φ j 1 N t D j t t T | F t j 1 3 E
366 351 352 353 365 syl21anc φ t T j J t t D j t t T | F t j 1 3 E
367 rabid t t T | F t j 1 3 E t T F t j 1 3 E
368 366 367 sylib φ t T j J t t D j t T F t j 1 3 E
369 368 simprd φ t T j J t t D j F t j 1 3 E
370 348 262 350 369 syl21anc φ t T j J t t D j D j 1 F t j 1 3 E
371 347 370 jca φ t T j J t t D j D j 1 j 4 3 E < F t F t j 1 3 E
372 7 ad2antrr φ t T j J t t D j D j 1 N
373 simplr φ t T j J t t D j D j 1 t T
374 183 adantrr φ t T j J t t D j D j 1 j 1 N
375 nfv j i 0 N
376 2 375 nfan j φ i 0 N
377 nfv j X i : T
378 376 377 nfim j φ i 0 N X i : T
379 eleq1w j = i j 0 N i 0 N
380 379 anbi2d j = i φ j 0 N φ i 0 N
381 fveq2 j = i X j = X i
382 381 feq1d j = i X j : T X i : T
383 380 382 imbi12d j = i φ j 0 N X j : T φ i 0 N X i : T
384 378 383 14 chvarfv φ i 0 N X i : T
385 384 ad4ant14 φ t T j J t t D j D j 1 i 0 N X i : T
386 simplll φ t T j J t t D j D j 1 i 0 N φ
387 simpr φ t T j J t t D j D j 1 i 0 N i 0 N
388 simpllr φ t T j J t t D j D j 1 i 0 N t T
389 2 375 112 nf3an j φ i 0 N t T
390 nfv j X i t 1
391 389 390 nfim j φ i 0 N t T X i t 1
392 379 3anbi2d j = i φ j 0 N t T φ i 0 N t T
393 381 fveq1d j = i X j t = X i t
394 393 breq1d j = i X j t 1 X i t 1
395 392 394 imbi12d j = i φ j 0 N t T X j t 1 φ i 0 N t T X i t 1
396 391 395 16 chvarfv φ i 0 N t T X i t 1
397 386 387 388 396 syl3anc φ t T j J t t D j D j 1 i 0 N X i t 1
398 simplll φ t T j J t t D j D j 1 i j N φ
399 0zd φ t T j J t i j N 0
400 elfzel2 i j N N
401 400 adantl φ t T j J t i j N N
402 elfzelz i j N i
403 402 adantl φ t T j J t i j N i
404 0red φ t T j J t i j N 0
405 elfzel1 i j N j
406 405 zred i j N j
407 406 adantl φ t T j J t i j N j
408 402 zred i j N i
409 408 adantl φ t T j J t i j N i
410 0red φ t T j J t 0
411 1red φ t T j J t 1
412 0le1 0 1
413 412 a1i φ t T j J t 0 1
414 elfzle1 j 1 N 1 j
415 183 414 syl φ t T j J t 1 j
416 410 411 238 413 415 letrd φ t T j J t 0 j
417 416 adantr φ t T j J t i j N 0 j
418 elfzle1 i j N j i
419 418 adantl φ t T j J t i j N j i
420 404 407 409 417 419 letrd φ t T j J t i j N 0 i
421 elfzle2 i j N i N
422 421 adantl φ t T j J t i j N i N
423 399 401 403 420 422 elfzd φ t T j J t i j N i 0 N
424 423 adantlrr φ t T j J t t D j D j 1 i j N i 0 N
425 simpll φ t T j J t t D j D j 1 i j N φ t T
426 simplrl φ t T j J t t D j D j 1 i j N j J t
427 simplrr φ t T j J t t D j D j 1 i j N t D j D j 1
428 427 eldifad φ t T j J t t D j D j 1 i j N t D j
429 simpr φ t T j J t t D j D j 1 i j N i j N
430 simpl1 φ t T j J t t D j i j N φ t T
431 430 simprd φ t T j J t t D j i j N t T
432 430 58 syl φ t T j J t t D j i j N F t
433 406 adantl φ t T j J t t D j i j N j
434 38 a1i φ t T j J t t D j i j N 1 3
435 433 434 resubcld φ t T j J t t D j i j N j 1 3
436 simpl1l φ t T j J t t D j i j N φ
437 436 50 syl φ t T j J t t D j i j N E
438 435 437 remulcld φ t T j J t t D j i j N j 1 3 E
439 408 adantl φ i j N i
440 38 a1i φ i j N 1 3
441 439 440 resubcld φ i j N i 1 3
442 50 adantr φ i j N E
443 441 442 remulcld φ i j N i 1 3 E
444 436 443 sylancom φ t T j J t t D j i j N i 1 3 E
445 simpl3 φ t T j J t t D j i j N t D j
446 simpl2 φ t T j J t t D j i j N j J t
447 430 446 183 syl2anc φ t T j J t t D j i j N j 1 N
448 436 447 363 syl2anc φ t T j J t t D j i j N D j = t T | F t j 1 3 E
449 445 448 eleqtrd φ t T j J t t D j i j N t t T | F t j 1 3 E
450 449 367 sylib φ t T j J t t D j i j N t T F t j 1 3 E
451 450 simprd φ t T j J t t D j i j N F t j 1 3 E
452 408 adantl φ t T j J t t D j i j N i
453 418 adantl φ t T j J t t D j i j N j i
454 433 452 434 453 lesub1dd φ t T j J t t D j i j N j 1 3 i 1 3
455 436 441 sylancom φ t T j J t t D j i j N i 1 3
456 12 rpregt0d φ E 0 < E
457 436 456 syl φ t T j J t t D j i j N E 0 < E
458 lemul1 j 1 3 i 1 3 E 0 < E j 1 3 i 1 3 j 1 3 E i 1 3 E
459 435 455 457 458 syl3anc φ t T j J t t D j i j N j 1 3 i 1 3 j 1 3 E i 1 3 E
460 454 459 mpbid φ t T j J t t D j i j N j 1 3 E i 1 3 E
461 432 438 444 451 460 letrd φ t T j J t t D j i j N F t i 1 3 E
462 rabid t t T | F t i 1 3 E t T F t i 1 3 E
463 431 461 462 sylanbrc φ t T j J t t D j i j N t t T | F t i 1 3 E
464 simpr φ t T j J t t D j i j N i j N
465 0zd φ t T j J t i j N 0
466 400 3ad2ant3 φ t T j J t i j N N
467 402 3ad2ant3 φ t T j J t i j N i
468 465 466 467 3jca φ t T j J t i j N 0 N i
469 420 422 jca φ t T j J t i j N 0 i i N
470 469 3impa φ t T j J t i j N 0 i i N
471 elfz2 i 0 N 0 N i 0 i i N
472 468 470 471 sylanbrc φ t T j J t i j N i 0 N
473 430 446 464 472 syl3anc φ t T j J t t D j i j N i 0 N
474 oveq1 j = i j 1 3 = i 1 3
475 474 oveq1d j = i j 1 3 E = i 1 3 E
476 475 breq2d j = i F t j 1 3 E F t i 1 3 E
477 476 rabbidv j = i t T | F t j 1 3 E = t T | F t i 1 3 E
478 simpr φ i 0 N i 0 N
479 rabexg T V t T | F t i 1 3 E V
480 8 479 syl φ t T | F t i 1 3 E V
481 480 adantr φ i 0 N t T | F t i 1 3 E V
482 4 477 478 481 fvmptd3 φ i 0 N D i = t T | F t i 1 3 E
483 436 473 482 syl2anc φ t T j J t t D j i j N D i = t T | F t i 1 3 E
484 463 483 eleqtrrd φ t T j J t t D j i j N t D i
485 425 426 428 429 484 syl31anc φ t T j J t t D j D j 1 i j N t D i
486 2 375 229 nf3an j φ i 0 N t D i
487 nfv j X i t < E N
488 486 487 nfim j φ i 0 N t D i X i t < E N
489 379 231 3anbi23d j = i φ j 0 N t D j φ i 0 N t D i
490 393 breq1d j = i X j t < E N X i t < E N
491 489 490 imbi12d j = i φ j 0 N t D j X j t < E N φ i 0 N t D i X i t < E N
492 488 491 17 chvarfv φ i 0 N t D i X i t < E N
493 398 424 485 492 syl3anc φ t T j J t t D j D j 1 i j N X i t < E N
494 12 ad2antrr φ t T j J t t D j D j 1 E +
495 13 ad2antrr φ t T j J t t D j D j 1 E < 1 3
496 372 373 374 385 397 493 494 495 stoweidlem11 φ t T j J t t D j D j 1 t T i = 0 N E X i t t < j + 1 3 E
497 eleq1w l = j l J t j J t
498 fveq2 l = j D l = D j
499 oveq1 l = j l 1 = j 1
500 499 fveq2d l = j D l 1 = D j 1
501 498 500 difeq12d l = j D l D l 1 = D j D j 1
502 501 eleq2d l = j t D l D l 1 t D j D j 1
503 497 502 anbi12d l = j l J t t D l D l 1 j J t t D j D j 1
504 503 anbi2d l = j φ t T l J t t D l D l 1 φ t T j J t t D j D j 1
505 oveq1 l = j l 4 3 = j 4 3
506 505 oveq1d l = j l 4 3 E = j 4 3 E
507 506 breq1d l = j l 4 3 E < t T i = 0 N E X i t t j 4 3 E < t T i = 0 N E X i t t
508 504 507 imbi12d l = j φ t T l J t t D l D l 1 l 4 3 E < t T i = 0 N E X i t t φ t T j J t t D j D j 1 j 4 3 E < t T i = 0 N E X i t t
509 eleq1w s = t s T t T
510 509 anbi2d s = t φ s T φ t T
511 fveq2 s = t J s = J t
512 511 eleq2d s = t l J s l J t
513 eleq1w s = t s D l D l 1 t D l D l 1
514 512 513 anbi12d s = t l J s s D l D l 1 l J t t D l D l 1
515 510 514 anbi12d s = t φ s T l J s s D l D l 1 φ t T l J t t D l D l 1
516 fveq2 s = t t T i = 0 N E X i t s = t T i = 0 N E X i t t
517 516 breq2d s = t l 4 3 E < t T i = 0 N E X i t s l 4 3 E < t T i = 0 N E X i t t
518 515 517 imbi12d s = t φ s T l J s s D l D l 1 l 4 3 E < t T i = 0 N E X i t s φ t T l J t t D l D l 1 l 4 3 E < t T i = 0 N E X i t t
519 nfv j s T
520 2 519 nfan j φ s T
521 nfcv _ j s
522 101 521 nffv _ j J s
523 522 nfcri j l J s
524 nfcv _ j l
525 86 524 nffv _ j D l
526 nfcv _ j l 1
527 86 526 nffv _ j D l 1
528 525 527 nfdif _ j D l D l 1
529 528 nfcri j s D l D l 1
530 523 529 nfan j l J s s D l D l 1
531 520 530 nfan j φ s T l J s s D l D l 1
532 nfv t s T
533 3 532 nfan t φ s T
534 nfmpt1 _ t t T j 1 N | t D j
535 6 534 nfcxfr _ t J
536 nfcv _ t s
537 535 536 nffv _ t J s
538 537 nfcri t l J s
539 nfcv _ t l
540 170 539 nffv _ t D l
541 nfcv _ t l 1
542 170 541 nffv _ t D l 1
543 540 542 nfdif _ t D l D l 1
544 543 nfcri t s D l D l 1
545 538 544 nfan t l J s s D l D l 1
546 533 545 nfan t φ s T l J s s D l D l 1
547 7 ad2antrr φ s T l J s s D l D l 1 N
548 8 ad2antrr φ s T l J s s D l D l 1 T V
549 20 rabex j 1 N | s D j V
550 nfcv _ t j
551 170 550 nffv _ t D j
552 551 nfcri t s D j
553 nfcv _ t 1 N
554 552 553 nfrabw _ t j 1 N | s D j
555 eleq1w t = s t D j s D j
556 555 rabbidv t = s j 1 N | t D j = j 1 N | s D j
557 536 554 556 6 fvmptf s T j 1 N | s D j V J s = j 1 N | s D j
558 549 557 mpan2 s T J s = j 1 N | s D j
559 558 eleq2d s T l J s l j 1 N | s D j
560 559 biimpa s T l J s l j 1 N | s D j
561 525 nfcri j s D l
562 fveq2 j = l D j = D l
563 562 eleq2d j = l s D j s D l
564 524 84 561 563 elrabf l j 1 N | s D j l 1 N s D l
565 560 564 sylib s T l J s l 1 N s D l
566 565 simpld s T l J s l 1 N
567 566 ad2ant2lr φ s T l J s s D l D l 1 l 1 N
568 simprr φ s T l J s s D l D l 1 s D l D l 1
569 9 ad2antrr φ s T l J s s D l D l 1 F : T
570 12 ad2antrr φ s T l J s s D l D l 1 E +
571 13 ad2antrr φ s T l J s s D l D l 1 E < 1 3
572 384 ad4ant14 φ s T l J s s D l D l 1 i 0 N X i : T
573 simp1ll φ s T l J s s D l D l 1 i 0 N t T φ
574 nfv j 0 X i t
575 389 574 nfim j φ i 0 N t T 0 X i t
576 393 breq2d j = i 0 X j t 0 X i t
577 392 576 imbi12d j = i φ j 0 N t T 0 X j t φ i 0 N t T 0 X i t
578 575 577 15 chvarfv φ i 0 N t T 0 X i t
579 573 578 syld3an1 φ s T l J s s D l D l 1 i 0 N t T 0 X i t
580 simp1ll φ s T l J s s D l D l 1 i 0 N t B i φ
581 nfmpt1 _ j j 0 N t T | j + 1 3 E F t
582 5 581 nfcxfr _ j B
583 582 227 nffv _ j B i
584 583 nfcri j t B i
585 2 375 584 nf3an j φ i 0 N t B i
586 nfv j 1 E N < X i t
587 585 586 nfim j φ i 0 N t B i 1 E N < X i t
588 fveq2 j = i B j = B i
589 588 eleq2d j = i t B j t B i
590 379 589 3anbi23d j = i φ j 0 N t B j φ i 0 N t B i
591 393 breq2d j = i 1 E N < X j t 1 E N < X i t
592 590 591 imbi12d j = i φ j 0 N t B j 1 E N < X j t φ i 0 N t B i 1 E N < X i t
593 587 592 18 chvarfv φ i 0 N t B i 1 E N < X i t
594 580 593 syld3an1 φ s T l J s s D l D l 1 i 0 N t B i 1 E N < X i t
595 1 531 546 4 5 547 548 567 568 569 570 571 572 579 594 stoweidlem26 φ s T l J s s D l D l 1 l 4 3 E < t T i = 0 N E X i t s
596 518 595 vtoclg t T φ t T l J t t D l D l 1 l 4 3 E < t T i = 0 N E X i t t
597 596 ad2antlr φ t T l J t t D l D l 1 φ t T l J t t D l D l 1 l 4 3 E < t T i = 0 N E X i t t
598 597 pm2.43i φ t T l J t t D l D l 1 l 4 3 E < t T i = 0 N E X i t t
599 508 598 vtoclg j J t φ t T j J t t D j D j 1 j 4 3 E < t T i = 0 N E X i t t
600 599 ad2antrl φ t T j J t t D j D j 1 φ t T j J t t D j D j 1 j 4 3 E < t T i = 0 N E X i t t
601 600 pm2.43i φ t T j J t t D j D j 1 j 4 3 E < t T i = 0 N E X i t t
602 496 601 jca φ t T j J t t D j D j 1 t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
603 262 371 602 3jca φ t T j J t t D j D j 1 j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
604 603 ex φ t T j J t t D j D j 1 j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
605 113 604 eximd φ t T j j J t t D j D j 1 j j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
606 261 605 mpd φ t T j j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
607 3anass j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
608 607 exbii j j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t j j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
609 606 608 sylib φ t T j j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
610 df-rex j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t j j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
611 609 610 sylibr φ t T j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
612 nfcv _ j
613 103 612 ssrexf J t j J t j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t j j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
614 30 611 613 sylc φ t T j j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
615 614 ex φ t T j j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t
616 3 615 ralrimi φ t T j j 4 3 E < F t F t j 1 3 E t T i = 0 N E X i t t < j + 1 3 E j 4 3 E < t T i = 0 N E X i t t