Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem38.1 |
|
2 |
|
stoweidlem38.2 |
|
3 |
|
stoweidlem38.3 |
|
4 |
|
stoweidlem38.4 |
|
5 |
|
stoweidlem38.5 |
|
6 |
3
|
nnrecred |
|
7 |
6
|
adantr |
|
8 |
|
fzfid |
|
9 |
1 4 5
|
stoweidlem15 |
|
10 |
9
|
simp1d |
|
11 |
10
|
an32s |
|
12 |
8 11
|
fsumrecl |
|
13 |
|
1red |
|
14 |
|
0le1 |
|
15 |
14
|
a1i |
|
16 |
3
|
nnred |
|
17 |
3
|
nngt0d |
|
18 |
|
divge0 |
|
19 |
13 15 16 17 18
|
syl22anc |
|
20 |
19
|
adantr |
|
21 |
9
|
simp2d |
|
22 |
21
|
an32s |
|
23 |
8 11 22
|
fsumge0 |
|
24 |
7 12 20 23
|
mulge0d |
|
25 |
1 2 3 4 5
|
stoweidlem30 |
|
26 |
24 25
|
breqtrrd |
|
27 |
|
1red |
|
28 |
9
|
simp3d |
|
29 |
28
|
an32s |
|
30 |
8 11 27 29
|
fsumle |
|
31 |
|
fzfid |
|
32 |
|
ax-1cn |
|
33 |
|
fsumconst |
|
34 |
31 32 33
|
sylancl |
|
35 |
3
|
nnnn0d |
|
36 |
|
hashfz1 |
|
37 |
35 36
|
syl |
|
38 |
37
|
oveq1d |
|
39 |
3
|
nncnd |
|
40 |
39
|
mulid1d |
|
41 |
34 38 40
|
3eqtrd |
|
42 |
41
|
adantr |
|
43 |
30 42
|
breqtrd |
|
44 |
16
|
adantr |
|
45 |
|
1red |
|
46 |
|
0lt1 |
|
47 |
46
|
a1i |
|
48 |
16 17
|
jca |
|
49 |
48
|
adantr |
|
50 |
|
divgt0 |
|
51 |
45 47 49 50
|
syl21anc |
|
52 |
|
lemul2 |
|
53 |
12 44 7 51 52
|
syl112anc |
|
54 |
43 53
|
mpbid |
|
55 |
25 54
|
eqbrtrd |
|
56 |
32
|
a1i |
|
57 |
3
|
nnne0d |
|
58 |
56 39 57
|
3jca |
|
59 |
58
|
adantr |
|
60 |
|
divcan1 |
|
61 |
59 60
|
syl |
|
62 |
55 61
|
breqtrd |
|
63 |
26 62
|
jca |
|