Metamath Proof Explorer


Theorem stoweidlem38

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem38.1 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem38.2 P = t T 1 M i = 1 M G i t
stoweidlem38.3 φ M
stoweidlem38.4 φ G : 1 M Q
stoweidlem38.5 φ f A f : T
Assertion stoweidlem38 φ S T 0 P S P S 1

Proof

Step Hyp Ref Expression
1 stoweidlem38.1 Q = h A | h Z = 0 t T 0 h t h t 1
2 stoweidlem38.2 P = t T 1 M i = 1 M G i t
3 stoweidlem38.3 φ M
4 stoweidlem38.4 φ G : 1 M Q
5 stoweidlem38.5 φ f A f : T
6 3 nnrecred φ 1 M
7 6 adantr φ S T 1 M
8 fzfid φ S T 1 M Fin
9 1 4 5 stoweidlem15 φ i 1 M S T G i S 0 G i S G i S 1
10 9 simp1d φ i 1 M S T G i S
11 10 an32s φ S T i 1 M G i S
12 8 11 fsumrecl φ S T i = 1 M G i S
13 1red φ 1
14 0le1 0 1
15 14 a1i φ 0 1
16 3 nnred φ M
17 3 nngt0d φ 0 < M
18 divge0 1 0 1 M 0 < M 0 1 M
19 13 15 16 17 18 syl22anc φ 0 1 M
20 19 adantr φ S T 0 1 M
21 9 simp2d φ i 1 M S T 0 G i S
22 21 an32s φ S T i 1 M 0 G i S
23 8 11 22 fsumge0 φ S T 0 i = 1 M G i S
24 7 12 20 23 mulge0d φ S T 0 1 M i = 1 M G i S
25 1 2 3 4 5 stoweidlem30 φ S T P S = 1 M i = 1 M G i S
26 24 25 breqtrrd φ S T 0 P S
27 1red φ S T i 1 M 1
28 9 simp3d φ i 1 M S T G i S 1
29 28 an32s φ S T i 1 M G i S 1
30 8 11 27 29 fsumle φ S T i = 1 M G i S i = 1 M 1
31 fzfid φ 1 M Fin
32 ax-1cn 1
33 fsumconst 1 M Fin 1 i = 1 M 1 = 1 M 1
34 31 32 33 sylancl φ i = 1 M 1 = 1 M 1
35 3 nnnn0d φ M 0
36 hashfz1 M 0 1 M = M
37 35 36 syl φ 1 M = M
38 37 oveq1d φ 1 M 1 = M 1
39 3 nncnd φ M
40 39 mulid1d φ M 1 = M
41 34 38 40 3eqtrd φ i = 1 M 1 = M
42 41 adantr φ S T i = 1 M 1 = M
43 30 42 breqtrd φ S T i = 1 M G i S M
44 16 adantr φ S T M
45 1red φ S T 1
46 0lt1 0 < 1
47 46 a1i φ S T 0 < 1
48 16 17 jca φ M 0 < M
49 48 adantr φ S T M 0 < M
50 divgt0 1 0 < 1 M 0 < M 0 < 1 M
51 45 47 49 50 syl21anc φ S T 0 < 1 M
52 lemul2 i = 1 M G i S M 1 M 0 < 1 M i = 1 M G i S M 1 M i = 1 M G i S 1 M M
53 12 44 7 51 52 syl112anc φ S T i = 1 M G i S M 1 M i = 1 M G i S 1 M M
54 43 53 mpbid φ S T 1 M i = 1 M G i S 1 M M
55 25 54 eqbrtrd φ S T P S 1 M M
56 32 a1i φ 1
57 3 nnne0d φ M 0
58 56 39 57 3jca φ 1 M M 0
59 58 adantr φ S T 1 M M 0
60 divcan1 1 M M 0 1 M M = 1
61 59 60 syl φ S T 1 M M = 1
62 55 61 breqtrd φ S T P S 1
63 26 62 jca φ S T 0 P S P S 1