Metamath Proof Explorer


Theorem stoweidlem39

Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91: assuming that r is a finite subset of W , x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ x_i ≤ 1, x_i < ε / m on V(t_i), and x_i > 1 - ε / m on B . Here D is used to represent A in the paper's Lemma 2 (because A is used for the subalgebra), M is used to represent m in the paper, E is used to represent ε, and v_i is used to represent V(t_i). W is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem39.1 h φ
stoweidlem39.2 t φ
stoweidlem39.3 w φ
stoweidlem39.4 U = T B
stoweidlem39.5 Y = h A | t T 0 h t h t 1
stoweidlem39.6 W = w J | e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
stoweidlem39.7 φ r 𝒫 W Fin
stoweidlem39.8 φ D r
stoweidlem39.9 φ D
stoweidlem39.10 φ E +
stoweidlem39.11 φ B T
stoweidlem39.12 φ W V
stoweidlem39.13 φ A V
Assertion stoweidlem39 φ m v v : 1 m W D ran v x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t

Proof

Step Hyp Ref Expression
1 stoweidlem39.1 h φ
2 stoweidlem39.2 t φ
3 stoweidlem39.3 w φ
4 stoweidlem39.4 U = T B
5 stoweidlem39.5 Y = h A | t T 0 h t h t 1
6 stoweidlem39.6 W = w J | e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
7 stoweidlem39.7 φ r 𝒫 W Fin
8 stoweidlem39.8 φ D r
9 stoweidlem39.9 φ D
10 stoweidlem39.10 φ E +
11 stoweidlem39.11 φ B T
12 stoweidlem39.12 φ W V
13 stoweidlem39.13 φ A V
14 8 9 jca φ D r D
15 ssn0 D r D r
16 unieq r = r =
17 uni0 =
18 16 17 syl6eq r = r =
19 18 necon3i r r
20 14 15 19 3syl φ r
21 20 neneqd φ ¬ r =
22 elinel2 r 𝒫 W Fin r Fin
23 7 22 syl φ r Fin
24 fz1f1o r Fin r = r v v : 1 r 1-1 onto r
25 pm2.53 r = r v v : 1 r 1-1 onto r ¬ r = r v v : 1 r 1-1 onto r
26 23 24 25 3syl φ ¬ r = r v v : 1 r 1-1 onto r
27 21 26 mpd φ r v v : 1 r 1-1 onto r
28 oveq2 m = r 1 m = 1 r
29 28 f1oeq2d m = r v : 1 m 1-1 onto r v : 1 r 1-1 onto r
30 29 exbidv m = r v v : 1 m 1-1 onto r v v : 1 r 1-1 onto r
31 30 rspcev r v v : 1 r 1-1 onto r m v v : 1 m 1-1 onto r
32 27 31 syl φ m v v : 1 m 1-1 onto r
33 f1of v : 1 m 1-1 onto r v : 1 m r
34 33 adantl φ m v : 1 m 1-1 onto r v : 1 m r
35 simpll φ m v : 1 m 1-1 onto r φ
36 elinel1 r 𝒫 W Fin r 𝒫 W
37 36 elpwid r 𝒫 W Fin r W
38 35 7 37 3syl φ m v : 1 m 1-1 onto r r W
39 34 38 fssd φ m v : 1 m 1-1 onto r v : 1 m W
40 8 ad2antrr φ m v : 1 m 1-1 onto r D r
41 dff1o2 v : 1 m 1-1 onto r v Fn 1 m Fun v -1 ran v = r
42 41 simp3bi v : 1 m 1-1 onto r ran v = r
43 42 unieqd v : 1 m 1-1 onto r ran v = r
44 43 adantl φ m v : 1 m 1-1 onto r ran v = r
45 40 44 sseqtrrd φ m v : 1 m 1-1 onto r D ran v
46 nfv h m
47 1 46 nfan h φ m
48 nfv h v : 1 m 1-1 onto r
49 47 48 nfan h φ m v : 1 m 1-1 onto r
50 nfv t m
51 2 50 nfan t φ m
52 nfv t v : 1 m 1-1 onto r
53 51 52 nfan t φ m v : 1 m 1-1 onto r
54 nfv w m
55 3 54 nfan w φ m
56 nfv w v : 1 m 1-1 onto r
57 55 56 nfan w φ m v : 1 m 1-1 onto r
58 eqid w r h A | t T 0 h t h t 1 t w h t < E m t T U 1 E m < h t = w r h A | t T 0 h t h t 1 t w h t < E m t T U 1 E m < h t
59 simplr φ m v : 1 m 1-1 onto r m
60 simpr φ m v : 1 m 1-1 onto r v : 1 m 1-1 onto r
61 10 ad2antrr φ m v : 1 m 1-1 onto r E +
62 11 sselda φ b B b T
63 notnot b B ¬ ¬ b B
64 63 intnand b B ¬ b T ¬ b B
65 64 adantl φ b B ¬ b T ¬ b B
66 eldif b T B b T ¬ b B
67 65 66 sylnibr φ b B ¬ b T B
68 4 eleq2i b U b T B
69 67 68 sylnibr φ b B ¬ b U
70 62 69 eldifd φ b B b T U
71 70 ralrimiva φ b B b T U
72 dfss3 B T U b B b T U
73 71 72 sylibr φ B T U
74 73 ad2antrr φ m v : 1 m 1-1 onto r B T U
75 12 ad2antrr φ m v : 1 m 1-1 onto r W V
76 13 ad2antrr φ m v : 1 m 1-1 onto r A V
77 23 ad2antrr φ m v : 1 m 1-1 onto r r Fin
78 mptfi r Fin w r h A | t T 0 h t h t 1 t w h t < E m t T U 1 E m < h t Fin
79 rnfi w r h A | t T 0 h t h t 1 t w h t < E m t T U 1 E m < h t Fin ran w r h A | t T 0 h t h t 1 t w h t < E m t T U 1 E m < h t Fin
80 77 78 79 3syl φ m v : 1 m 1-1 onto r ran w r h A | t T 0 h t h t 1 t w h t < E m t T U 1 E m < h t Fin
81 49 53 57 5 6 58 38 59 60 61 74 75 76 80 stoweidlem31 φ m v : 1 m 1-1 onto r x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t
82 39 45 81 3jca φ m v : 1 m 1-1 onto r v : 1 m W D ran v x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t
83 82 ex φ m v : 1 m 1-1 onto r v : 1 m W D ran v x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t
84 83 eximdv φ m v v : 1 m 1-1 onto r v v : 1 m W D ran v x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t
85 84 reximdva φ m v v : 1 m 1-1 onto r m v v : 1 m W D ran v x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t
86 32 85 mpd φ m v v : 1 m W D ran v x x : 1 m Y i 1 m t v i x i t < E m t B 1 E m < x i t