Metamath Proof Explorer


Theorem stoweidlem40

Description: This lemma proves that q_n is in the subalgebra, as in the proof of Lemma 1 in BrosowskiDeutsh p. 90. Q is used to represent q_n in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem40.1 _ t P
stoweidlem40.2 t φ
stoweidlem40.3 Q = t T 1 P t N M
stoweidlem40.4 F = t T 1 P t N
stoweidlem40.5 G = t T 1
stoweidlem40.6 H = t T P t N
stoweidlem40.7 φ P A
stoweidlem40.8 φ P : T
stoweidlem40.9 φ f A f : T
stoweidlem40.10 φ f A g A t T f t + g t A
stoweidlem40.11 φ f A g A t T f t g t A
stoweidlem40.12 φ x t T x A
stoweidlem40.13 φ N
stoweidlem40.14 φ M
Assertion stoweidlem40 φ Q A

Proof

Step Hyp Ref Expression
1 stoweidlem40.1 _ t P
2 stoweidlem40.2 t φ
3 stoweidlem40.3 Q = t T 1 P t N M
4 stoweidlem40.4 F = t T 1 P t N
5 stoweidlem40.5 G = t T 1
6 stoweidlem40.6 H = t T P t N
7 stoweidlem40.7 φ P A
8 stoweidlem40.8 φ P : T
9 stoweidlem40.9 φ f A f : T
10 stoweidlem40.10 φ f A g A t T f t + g t A
11 stoweidlem40.11 φ f A g A t T f t g t A
12 stoweidlem40.12 φ x t T x A
13 stoweidlem40.13 φ N
14 stoweidlem40.14 φ M
15 simpr φ t T t T
16 1red φ t T 1
17 8 ffvelrnda φ t T P t
18 13 nnnn0d φ N 0
19 18 adantr φ t T N 0
20 17 19 reexpcld φ t T P t N
21 16 20 resubcld φ t T 1 P t N
22 4 fvmpt2 t T 1 P t N F t = 1 P t N
23 15 21 22 syl2anc φ t T F t = 1 P t N
24 23 eqcomd φ t T 1 P t N = F t
25 24 oveq1d φ t T 1 P t N M = F t M
26 2 25 mpteq2da φ t T 1 P t N M = t T F t M
27 3 26 syl5eq φ Q = t T F t M
28 nfmpt1 _ t t T 1 P t N
29 4 28 nfcxfr _ t F
30 1re 1
31 5 fvmpt2 t T 1 G t = 1
32 30 31 mpan2 t T G t = 1
33 32 eqcomd t T 1 = G t
34 33 adantl φ t T 1 = G t
35 6 fvmpt2 t T P t N H t = P t N
36 15 20 35 syl2anc φ t T H t = P t N
37 36 eqcomd φ t T P t N = H t
38 34 37 oveq12d φ t T 1 P t N = G t H t
39 2 38 mpteq2da φ t T 1 P t N = t T G t H t
40 4 39 syl5eq φ F = t T G t H t
41 12 stoweidlem4 φ 1 t T 1 A
42 30 41 mpan2 φ t T 1 A
43 5 42 eqeltrid φ G A
44 1 2 9 11 12 7 18 stoweidlem19 φ t T P t N A
45 6 44 eqeltrid φ H A
46 nfmpt1 _ t t T 1
47 5 46 nfcxfr _ t G
48 nfmpt1 _ t t T P t N
49 6 48 nfcxfr _ t H
50 47 49 2 9 10 11 12 stoweidlem33 φ G A H A t T G t H t A
51 43 45 50 mpd3an23 φ t T G t H t A
52 40 51 eqeltrd φ F A
53 14 nnnn0d φ M 0
54 29 2 9 11 12 52 53 stoweidlem19 φ t T F t M A
55 27 54 eqeltrd φ Q A