Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem42.1 |
|
2 |
|
stoweidlem42.2 |
|
3 |
|
stoweidlem42.3 |
|
4 |
|
stoweidlem42.4 |
|
5 |
|
stoweidlem42.5 |
|
6 |
|
stoweidlem42.6 |
|
7 |
|
stoweidlem42.7 |
|
8 |
|
stoweidlem42.8 |
|
9 |
|
stoweidlem42.9 |
|
10 |
|
stoweidlem42.10 |
|
11 |
|
stoweidlem42.11 |
|
12 |
|
stoweidlem42.12 |
|
13 |
|
stoweidlem42.13 |
|
14 |
|
stoweidlem42.14 |
|
15 |
|
stoweidlem42.15 |
|
16 |
|
stoweidlem42.16 |
|
17 |
|
1red |
|
18 |
11
|
rpred |
|
19 |
17 18
|
resubcld |
|
20 |
19
|
adantr |
|
21 |
18 8
|
nndivred |
|
22 |
17 21
|
resubcld |
|
23 |
22
|
adantr |
|
24 |
8
|
nnnn0d |
|
25 |
24
|
adantr |
|
26 |
23 25
|
reexpcld |
|
27 |
|
elnnuz |
|
28 |
8 27
|
sylib |
|
29 |
28
|
adantr |
|
30 |
|
nfv |
|
31 |
1 30
|
nfan |
|
32 |
|
nfv |
|
33 |
31 32
|
nfan |
|
34 |
|
nfcv |
|
35 |
|
nfmpt1 |
|
36 |
34 35
|
nfmpt |
|
37 |
6 36
|
nfcxfr |
|
38 |
|
nfcv |
|
39 |
37 38
|
nffv |
|
40 |
|
nfcv |
|
41 |
39 40
|
nffv |
|
42 |
41
|
nfel1 |
|
43 |
33 42
|
nfim |
|
44 |
|
eleq1 |
|
45 |
44
|
anbi2d |
|
46 |
|
fveq2 |
|
47 |
46
|
eleq1d |
|
48 |
45 47
|
imbi12d |
|
49 |
16
|
sselda |
|
50 |
|
ovex |
|
51 |
|
mptexg |
|
52 |
50 51
|
mp1i |
|
53 |
6
|
fvmpt2 |
|
54 |
49 52 53
|
syl2anc |
|
55 |
9
|
ffvelrnda |
|
56 |
|
simpl |
|
57 |
56 55
|
jca |
|
58 |
|
eleq1 |
|
59 |
58
|
anbi2d |
|
60 |
|
feq1 |
|
61 |
59 60
|
imbi12d |
|
62 |
61 13
|
vtoclg |
|
63 |
55 57 62
|
sylc |
|
64 |
63
|
adantlr |
|
65 |
49
|
adantr |
|
66 |
64 65
|
ffvelrnd |
|
67 |
54 66
|
fvmpt2d |
|
68 |
67 66
|
eqeltrd |
|
69 |
43 48 68
|
chvarfv |
|
70 |
|
remulcl |
|
71 |
70
|
adantl |
|
72 |
29 69 71
|
seqcl |
|
73 |
11
|
rpcnd |
|
74 |
8
|
nncnd |
|
75 |
8
|
nnne0d |
|
76 |
73 74 75
|
divcan1d |
|
77 |
76
|
eqcomd |
|
78 |
77
|
oveq2d |
|
79 |
|
1cnd |
|
80 |
73 74 75
|
divcld |
|
81 |
80 74
|
mulcld |
|
82 |
79 81
|
negsubd |
|
83 |
80 74
|
mulneg1d |
|
84 |
83
|
eqcomd |
|
85 |
84
|
oveq2d |
|
86 |
78 82 85
|
3eqtr2d |
|
87 |
21
|
renegcld |
|
88 |
8
|
nnred |
|
89 |
|
3re |
|
90 |
89
|
a1i |
|
91 |
|
3ne0 |
|
92 |
91
|
a1i |
|
93 |
90 92
|
rereccld |
|
94 |
|
1lt3 |
|
95 |
94
|
a1i |
|
96 |
|
0lt1 |
|
97 |
96
|
a1i |
|
98 |
|
3pos |
|
99 |
98
|
a1i |
|
100 |
|
ltdiv2 |
|
101 |
17 97 90 99 17 97 100
|
syl222anc |
|
102 |
95 101
|
mpbid |
|
103 |
|
1div1e1 |
|
104 |
102 103
|
breqtrdi |
|
105 |
18 93 17 12 104
|
lttrd |
|
106 |
8
|
nnge1d |
|
107 |
18 17 88 105 106
|
ltletrd |
|
108 |
18 88 107
|
ltled |
|
109 |
11
|
rpregt0d |
|
110 |
8
|
nngt0d |
|
111 |
|
lediv2 |
|
112 |
109 88 110 109 111
|
syl121anc |
|
113 |
108 112
|
mpbid |
|
114 |
11
|
rpcnne0d |
|
115 |
|
divid |
|
116 |
114 115
|
syl |
|
117 |
113 116
|
breqtrd |
|
118 |
21 17
|
lenegd |
|
119 |
117 118
|
mpbid |
|
120 |
|
bernneq |
|
121 |
87 24 119 120
|
syl3anc |
|
122 |
79 80
|
negsubd |
|
123 |
122
|
oveq1d |
|
124 |
121 123
|
breqtrd |
|
125 |
86 124
|
eqbrtrd |
|
126 |
125
|
adantr |
|
127 |
|
eqid |
|
128 |
8
|
adantr |
|
129 |
|
eqid |
|
130 |
31 66 129
|
fmptdf |
|
131 |
54
|
feq1d |
|
132 |
130 131
|
mpbird |
|
133 |
10
|
r19.21bi |
|
134 |
133
|
an32s |
|
135 |
134 67
|
breqtrrd |
|
136 |
80
|
addid2d |
|
137 |
|
lediv2 |
|
138 |
17 97 88 110 109 137
|
syl221anc |
|
139 |
106 138
|
mpbid |
|
140 |
73
|
div1d |
|
141 |
139 140
|
breqtrd |
|
142 |
21 18 17 141 105
|
lelttrd |
|
143 |
136 142
|
eqbrtrd |
|
144 |
|
0red |
|
145 |
144 21 17
|
ltaddsubd |
|
146 |
143 145
|
mpbid |
|
147 |
22 146
|
elrpd |
|
148 |
147
|
adantr |
|
149 |
39 31 127 128 132 135 148
|
stoweidlem3 |
|
150 |
20 26 72 126 149
|
lelttrd |
|
151 |
7
|
fvmpt2 |
|
152 |
49 72 151
|
syl2anc |
|
153 |
150 152
|
breqtrrd |
|
154 |
|
simpl |
|
155 |
1 3 4 5 6 7 15 8 9 13 14
|
fmuldfeq |
|
156 |
154 49 155
|
syl2anc |
|
157 |
153 156
|
breqtrrd |
|
158 |
157
|
ex |
|
159 |
2 158
|
ralrimi |
|