Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem43.1 |
|
2 |
|
stoweidlem43.2 |
|
3 |
|
stoweidlem43.3 |
|
4 |
|
stoweidlem43.4 |
|
5 |
|
stoweidlem43.5 |
|
6 |
|
stoweidlem43.6 |
|
7 |
|
stoweidlem43.7 |
|
8 |
|
stoweidlem43.8 |
|
9 |
|
stoweidlem43.9 |
|
10 |
|
stoweidlem43.10 |
|
11 |
|
stoweidlem43.11 |
|
12 |
|
stoweidlem43.12 |
|
13 |
|
stoweidlem43.13 |
|
14 |
|
stoweidlem43.14 |
|
15 |
|
stoweidlem43.15 |
|
16 |
|
nfv |
|
17 |
15
|
eldifad |
|
18 |
|
elunii |
|
19 |
14 13 18
|
syl2anc |
|
20 |
19 6
|
eleqtrrdi |
|
21 |
15
|
eldifbd |
|
22 |
|
nelne2 |
|
23 |
14 21 22
|
syl2anc |
|
24 |
23
|
necomd |
|
25 |
17 20 24
|
3jca |
|
26 |
|
simpr2 |
|
27 |
|
nfv |
|
28 |
2 27
|
nfan |
|
29 |
|
nfv |
|
30 |
28 29
|
nfim |
|
31 |
|
eleq1 |
|
32 |
|
neeq2 |
|
33 |
31 32
|
3anbi23d |
|
34 |
33
|
anbi2d |
|
35 |
|
fveq2 |
|
36 |
35
|
neeq2d |
|
37 |
36
|
rexbidv |
|
38 |
34 37
|
imbi12d |
|
39 |
|
simpr1 |
|
40 |
|
eleq1 |
|
41 |
|
neeq1 |
|
42 |
40 41
|
3anbi13d |
|
43 |
42
|
anbi2d |
|
44 |
|
fveq2 |
|
45 |
44
|
neeq1d |
|
46 |
45
|
rexbidv |
|
47 |
43 46
|
imbi12d |
|
48 |
12
|
a1i |
|
49 |
47 48
|
vtoclga |
|
50 |
39 49
|
mpcom |
|
51 |
30 38 50
|
vtoclg1f |
|
52 |
26 51
|
mpcom |
|
53 |
|
df-rex |
|
54 |
52 53
|
sylib |
|
55 |
25 54
|
mpdan |
|
56 |
|
nfv |
|
57 |
2 56
|
nfan |
|
58 |
|
nfcv |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
8
|
sselda |
|
62 |
4 6 60 61
|
fcnre |
|
63 |
62
|
adantlr |
|
64 |
9
|
3adant1r |
|
65 |
11
|
adantlr |
|
66 |
17
|
adantr |
|
67 |
20
|
adantr |
|
68 |
|
simprl |
|
69 |
|
simprr |
|
70 |
57 58 59 63 64 65 66 67 68 69
|
stoweidlem23 |
|
71 |
|
eleq1 |
|
72 |
|
fveq1 |
|
73 |
|
fveq1 |
|
74 |
72 73
|
neeq12d |
|
75 |
73
|
eqeq1d |
|
76 |
71 74 75
|
3anbi123d |
|
77 |
76
|
spcegv |
|
78 |
77
|
3ad2ant1 |
|
79 |
78
|
pm2.43i |
|
80 |
70 79
|
syl |
|
81 |
1 16 55 80
|
exlimdd |
|
82 |
|
nfmpt1 |
|
83 |
|
nfcv |
|
84 |
|
nfcv |
|
85 |
|
nfv |
|
86 |
2 85
|
nfan |
|
87 |
|
fveq2 |
|
88 |
87 87
|
oveq12d |
|
89 |
88
|
cbvmptv |
|
90 |
|
eqid |
|
91 |
|
eqid |
|
92 |
7
|
adantr |
|
93 |
8
|
adantr |
|
94 |
|
eleq1 |
|
95 |
94
|
3anbi2d |
|
96 |
|
fveq1 |
|
97 |
96
|
oveq1d |
|
98 |
97
|
mpteq2dv |
|
99 |
98
|
eleq1d |
|
100 |
95 99
|
imbi12d |
|
101 |
100 10
|
chvarvv |
|
102 |
101
|
3adant1r |
|
103 |
11
|
adantlr |
|
104 |
17
|
adantr |
|
105 |
20
|
adantr |
|
106 |
|
simpr1 |
|
107 |
|
simpr2 |
|
108 |
|
simpr3 |
|
109 |
3 82 83 84 86 4 5 6 89 90 91 92 93 102 103 104 105 106 107 108
|
stoweidlem36 |
|
110 |
109
|
ex |
|
111 |
110
|
exlimdv |
|
112 |
81 111
|
mpd |
|