Metamath Proof Explorer


Theorem stoweidlem43

Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p_t in the subalgebra, such that p_t( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Hera Z is used for t_0 , S is used for t e. T - U , h is used for p_t. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem43.1 g φ
stoweidlem43.2 t φ
stoweidlem43.3 _ h Q
stoweidlem43.4 K = topGen ran .
stoweidlem43.5 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem43.6 T = J
stoweidlem43.7 φ J Comp
stoweidlem43.8 φ A J Cn K
stoweidlem43.9 φ f A l A t T f t + l t A
stoweidlem43.10 φ f A l A t T f t l t A
stoweidlem43.11 φ x t T x A
stoweidlem43.12 φ r T t T r t g A g r g t
stoweidlem43.13 φ U J
stoweidlem43.14 φ Z U
stoweidlem43.15 φ S T U
Assertion stoweidlem43 φ h h Q 0 < h S

Proof

Step Hyp Ref Expression
1 stoweidlem43.1 g φ
2 stoweidlem43.2 t φ
3 stoweidlem43.3 _ h Q
4 stoweidlem43.4 K = topGen ran .
5 stoweidlem43.5 Q = h A | h Z = 0 t T 0 h t h t 1
6 stoweidlem43.6 T = J
7 stoweidlem43.7 φ J Comp
8 stoweidlem43.8 φ A J Cn K
9 stoweidlem43.9 φ f A l A t T f t + l t A
10 stoweidlem43.10 φ f A l A t T f t l t A
11 stoweidlem43.11 φ x t T x A
12 stoweidlem43.12 φ r T t T r t g A g r g t
13 stoweidlem43.13 φ U J
14 stoweidlem43.14 φ Z U
15 stoweidlem43.15 φ S T U
16 nfv g f f A f S f Z f Z = 0
17 15 eldifad φ S T
18 elunii Z U U J Z J
19 14 13 18 syl2anc φ Z J
20 19 6 eleqtrrdi φ Z T
21 15 eldifbd φ ¬ S U
22 nelne2 Z U ¬ S U Z S
23 14 21 22 syl2anc φ Z S
24 23 necomd φ S Z
25 17 20 24 3jca φ S T Z T S Z
26 simpr2 φ S T Z T S Z Z T
27 nfv t S T Z T S Z
28 2 27 nfan t φ S T Z T S Z
29 nfv t g A g S g Z
30 28 29 nfim t φ S T Z T S Z g A g S g Z
31 eleq1 t = Z t T Z T
32 neeq2 t = Z S t S Z
33 31 32 3anbi23d t = Z S T t T S t S T Z T S Z
34 33 anbi2d t = Z φ S T t T S t φ S T Z T S Z
35 fveq2 t = Z g t = g Z
36 35 neeq2d t = Z g S g t g S g Z
37 36 rexbidv t = Z g A g S g t g A g S g Z
38 34 37 imbi12d t = Z φ S T t T S t g A g S g t φ S T Z T S Z g A g S g Z
39 simpr1 φ S T t T S t S T
40 eleq1 r = S r T S T
41 neeq1 r = S r t S t
42 40 41 3anbi13d r = S r T t T r t S T t T S t
43 42 anbi2d r = S φ r T t T r t φ S T t T S t
44 fveq2 r = S g r = g S
45 44 neeq1d r = S g r g t g S g t
46 45 rexbidv r = S g A g r g t g A g S g t
47 43 46 imbi12d r = S φ r T t T r t g A g r g t φ S T t T S t g A g S g t
48 12 a1i r T φ r T t T r t g A g r g t
49 47 48 vtoclga S T φ S T t T S t g A g S g t
50 39 49 mpcom φ S T t T S t g A g S g t
51 30 38 50 vtoclg1f Z T φ S T Z T S Z g A g S g Z
52 26 51 mpcom φ S T Z T S Z g A g S g Z
53 df-rex g A g S g Z g g A g S g Z
54 52 53 sylib φ S T Z T S Z g g A g S g Z
55 25 54 mpdan φ g g A g S g Z
56 nfv t g A g S g Z
57 2 56 nfan t φ g A g S g Z
58 nfcv _ t g
59 eqid t T g t g Z = t T g t g Z
60 eqid J Cn K = J Cn K
61 8 sselda φ f A f J Cn K
62 4 6 60 61 fcnre φ f A f : T
63 62 adantlr φ g A g S g Z f A f : T
64 9 3adant1r φ g A g S g Z f A l A t T f t + l t A
65 11 adantlr φ g A g S g Z x t T x A
66 17 adantr φ g A g S g Z S T
67 20 adantr φ g A g S g Z Z T
68 simprl φ g A g S g Z g A
69 simprr φ g A g S g Z g S g Z
70 57 58 59 63 64 65 66 67 68 69 stoweidlem23 φ g A g S g Z t T g t g Z A t T g t g Z S t T g t g Z Z t T g t g Z Z = 0
71 eleq1 f = t T g t g Z f A t T g t g Z A
72 fveq1 f = t T g t g Z f S = t T g t g Z S
73 fveq1 f = t T g t g Z f Z = t T g t g Z Z
74 72 73 neeq12d f = t T g t g Z f S f Z t T g t g Z S t T g t g Z Z
75 73 eqeq1d f = t T g t g Z f Z = 0 t T g t g Z Z = 0
76 71 74 75 3anbi123d f = t T g t g Z f A f S f Z f Z = 0 t T g t g Z A t T g t g Z S t T g t g Z Z t T g t g Z Z = 0
77 76 spcegv t T g t g Z A t T g t g Z A t T g t g Z S t T g t g Z Z t T g t g Z Z = 0 f f A f S f Z f Z = 0
78 77 3ad2ant1 t T g t g Z A t T g t g Z S t T g t g Z Z t T g t g Z Z = 0 t T g t g Z A t T g t g Z S t T g t g Z Z t T g t g Z Z = 0 f f A f S f Z f Z = 0
79 78 pm2.43i t T g t g Z A t T g t g Z S t T g t g Z Z t T g t g Z Z = 0 f f A f S f Z f Z = 0
80 70 79 syl φ g A g S g Z f f A f S f Z f Z = 0
81 1 16 55 80 exlimdd φ f f A f S f Z f Z = 0
82 nfmpt1 _ t t T s T f s f s t sup ran s T f s f s <
83 nfcv _ t f
84 nfcv _ t s T f s f s
85 nfv t f A f S f Z f Z = 0
86 2 85 nfan t φ f A f S f Z f Z = 0
87 fveq2 s = t f s = f t
88 87 87 oveq12d s = t f s f s = f t f t
89 88 cbvmptv s T f s f s = t T f t f t
90 eqid sup ran s T f s f s < = sup ran s T f s f s <
91 eqid t T s T f s f s t sup ran s T f s f s < = t T s T f s f s t sup ran s T f s f s <
92 7 adantr φ f A f S f Z f Z = 0 J Comp
93 8 adantr φ f A f S f Z f Z = 0 A J Cn K
94 eleq1 f = k f A k A
95 94 3anbi2d f = k φ f A l A φ k A l A
96 fveq1 f = k f t = k t
97 96 oveq1d f = k f t l t = k t l t
98 97 mpteq2dv f = k t T f t l t = t T k t l t
99 98 eleq1d f = k t T f t l t A t T k t l t A
100 95 99 imbi12d f = k φ f A l A t T f t l t A φ k A l A t T k t l t A
101 100 10 chvarvv φ k A l A t T k t l t A
102 101 3adant1r φ f A f S f Z f Z = 0 k A l A t T k t l t A
103 11 adantlr φ f A f S f Z f Z = 0 x t T x A
104 17 adantr φ f A f S f Z f Z = 0 S T
105 20 adantr φ f A f S f Z f Z = 0 Z T
106 simpr1 φ f A f S f Z f Z = 0 f A
107 simpr2 φ f A f S f Z f Z = 0 f S f Z
108 simpr3 φ f A f S f Z f Z = 0 f Z = 0
109 3 82 83 84 86 4 5 6 89 90 91 92 93 102 103 104 105 106 107 108 stoweidlem36 φ f A f S f Z f Z = 0 h h Q 0 < h S
110 109 ex φ f A f S f Z f Z = 0 h h Q 0 < h S
111 110 exlimdv φ f f A f S f Z f Z = 0 h h Q 0 < h S
112 81 111 mpd φ h h Q 0 < h S