Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem44.1 |
|
2 |
|
stoweidlem44.2 |
|
3 |
|
stoweidlem44.3 |
|
4 |
|
stoweidlem44.4 |
|
5 |
|
stoweidlem44.5 |
|
6 |
|
stoweidlem44.6 |
|
7 |
|
stoweidlem44.7 |
|
8 |
|
stoweidlem44.8 |
|
9 |
|
stoweidlem44.9 |
|
10 |
|
stoweidlem44.10 |
|
11 |
|
stoweidlem44.11 |
|
12 |
|
stoweidlem44.12 |
|
13 |
|
stoweidlem44.13 |
|
14 |
|
stoweidlem44.14 |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
6
|
nnrecred |
|
18 |
|
ssrab2 |
|
19 |
4 18
|
eqsstri |
|
20 |
|
fss |
|
21 |
7 19 20
|
sylancl |
|
22 |
|
eqid |
|
23 |
10
|
sselda |
|
24 |
3 9 22 23
|
fcnre |
|
25 |
2 5 15 16 6 17 21 11 12 13 24
|
stoweidlem32 |
|
26 |
4 5 6 7 24
|
stoweidlem38 |
|
27 |
26
|
ex |
|
28 |
2 27
|
ralrimi |
|
29 |
4 5 6 7 24 14
|
stoweidlem37 |
|
30 |
|
nfv |
|
31 |
1 30
|
nfan |
|
32 |
|
nfv |
|
33 |
8
|
r19.21bi |
|
34 |
|
df-rex |
|
35 |
33 34
|
sylib |
|
36 |
17
|
ad2antrr |
|
37 |
|
simpll |
|
38 |
|
eldifi |
|
39 |
38
|
ad2antlr |
|
40 |
|
fzfid |
|
41 |
4 7 24
|
stoweidlem15 |
|
42 |
41
|
an32s |
|
43 |
42
|
simp1d |
|
44 |
40 43
|
fsumrecl |
|
45 |
37 39 44
|
syl2anc |
|
46 |
6
|
nnred |
|
47 |
6
|
nngt0d |
|
48 |
46 47
|
recgt0d |
|
49 |
48
|
ad2antrr |
|
50 |
|
0red |
|
51 |
|
simprl |
|
52 |
37 51 39
|
3jca |
|
53 |
|
snfi |
|
54 |
53
|
a1i |
|
55 |
|
simpl1 |
|
56 |
|
simpl3 |
|
57 |
|
elsni |
|
58 |
57
|
adantl |
|
59 |
|
simpl2 |
|
60 |
58 59
|
eqeltrd |
|
61 |
55 56 60 43
|
syl21anc |
|
62 |
54 61
|
fsumrecl |
|
63 |
52 62
|
syl |
|
64 |
50 63
|
readdcld |
|
65 |
|
fzfi |
|
66 |
|
diffi |
|
67 |
65 66
|
mp1i |
|
68 |
|
eldifi |
|
69 |
68 43
|
sylan2 |
|
70 |
67 69
|
fsumrecl |
|
71 |
37 39 70
|
syl2anc |
|
72 |
71 63
|
readdcld |
|
73 |
|
00id |
|
74 |
|
simprr |
|
75 |
4 7 24
|
stoweidlem15 |
|
76 |
75
|
simp1d |
|
77 |
37 51 39 76
|
syl21anc |
|
78 |
77
|
recnd |
|
79 |
|
fveq2 |
|
80 |
79
|
fveq1d |
|
81 |
80
|
sumsn |
|
82 |
51 78 81
|
syl2anc |
|
83 |
74 82
|
breqtrrd |
|
84 |
50 63 50 83
|
ltadd2dd |
|
85 |
73 84
|
eqbrtrrid |
|
86 |
|
0red |
|
87 |
70
|
3adant2 |
|
88 |
|
simpll |
|
89 |
68
|
adantl |
|
90 |
|
simplr |
|
91 |
88 89 90 41
|
syl21anc |
|
92 |
91
|
simp2d |
|
93 |
67 69 92
|
fsumge0 |
|
94 |
93
|
3adant2 |
|
95 |
86 87 62 94
|
leadd1dd |
|
96 |
52 95
|
syl |
|
97 |
50 64 72 85 96
|
ltletrd |
|
98 |
|
eldifn |
|
99 |
|
imnan |
|
100 |
98 99
|
mpbi |
|
101 |
|
elin |
|
102 |
100 101
|
mtbir |
|
103 |
102
|
nel0 |
|
104 |
103
|
a1i |
|
105 |
|
undif1 |
|
106 |
|
snssi |
|
107 |
106
|
3ad2ant2 |
|
108 |
|
ssequn2 |
|
109 |
107 108
|
sylib |
|
110 |
105 109
|
eqtr2id |
|
111 |
|
fzfid |
|
112 |
43
|
3adantl2 |
|
113 |
112
|
recnd |
|
114 |
104 110 111 113
|
fsumsplit |
|
115 |
52 114
|
syl |
|
116 |
97 115
|
breqtrrd |
|
117 |
36 45 49 116
|
mulgt0d |
|
118 |
31 32 35 117
|
exlimdd |
|
119 |
4 5 6 7 24
|
stoweidlem30 |
|
120 |
38 119
|
sylan2 |
|
121 |
118 120
|
breqtrrd |
|
122 |
121
|
ex |
|
123 |
2 122
|
ralrimi |
|
124 |
28 29 123
|
3jca |
|
125 |
|
eleq1 |
|
126 |
|
nfmpt1 |
|
127 |
5 126
|
nfcxfr |
|
128 |
127
|
nfeq2 |
|
129 |
|
fveq1 |
|
130 |
129
|
breq2d |
|
131 |
129
|
breq1d |
|
132 |
130 131
|
anbi12d |
|
133 |
128 132
|
ralbid |
|
134 |
|
fveq1 |
|
135 |
134
|
eqeq1d |
|
136 |
129
|
breq2d |
|
137 |
128 136
|
ralbid |
|
138 |
133 135 137
|
3anbi123d |
|
139 |
125 138
|
anbi12d |
|
140 |
139
|
spcegv |
|
141 |
25 140
|
syl |
|
142 |
25 124 141
|
mp2and |
|
143 |
|
df-rex |
|
144 |
142 143
|
sylibr |
|