Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem45.1 |
|
2 |
|
stoweidlem45.2 |
|
3 |
|
stoweidlem45.3 |
|
4 |
|
stoweidlem45.4 |
|
5 |
|
stoweidlem45.5 |
|
6 |
|
stoweidlem45.6 |
|
7 |
|
stoweidlem45.7 |
|
8 |
|
stoweidlem45.8 |
|
9 |
|
stoweidlem45.9 |
|
10 |
|
stoweidlem45.10 |
|
11 |
|
stoweidlem45.11 |
|
12 |
|
stoweidlem45.12 |
|
13 |
|
stoweidlem45.13 |
|
14 |
|
stoweidlem45.14 |
|
15 |
|
stoweidlem45.15 |
|
16 |
|
stoweidlem45.16 |
|
17 |
|
stoweidlem45.17 |
|
18 |
|
stoweidlem45.18 |
|
19 |
|
stoweidlem45.19 |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
5
|
nnnn0d |
|
24 |
6 23
|
nnexpcld |
|
25 |
1 2 4 20 21 22 9 10 13 14 15 16 5 24
|
stoweidlem40 |
|
26 |
|
1red |
|
27 |
10
|
ffvelrnda |
|
28 |
23
|
adantr |
|
29 |
27 28
|
reexpcld |
|
30 |
26 29
|
resubcld |
|
31 |
6
|
nnnn0d |
|
32 |
31 23
|
nn0expcld |
|
33 |
32
|
adantr |
|
34 |
|
1m1e0 |
|
35 |
11
|
r19.21bi |
|
36 |
35
|
simpld |
|
37 |
35
|
simprd |
|
38 |
|
exple1 |
|
39 |
27 36 37 28 38
|
syl31anc |
|
40 |
29 26 26 39
|
lesub2dd |
|
41 |
34 40
|
eqbrtrrid |
|
42 |
30 33 41
|
expge0d |
|
43 |
4 10 23 31
|
stoweidlem12 |
|
44 |
42 43
|
breqtrrd |
|
45 |
|
0red |
|
46 |
27 28 36
|
expge0d |
|
47 |
45 29 26 46
|
lesub2dd |
|
48 |
|
1m0e1 |
|
49 |
47 48
|
breqtrdi |
|
50 |
|
exple1 |
|
51 |
30 41 49 33 50
|
syl31anc |
|
52 |
43 51
|
eqbrtrd |
|
53 |
44 52
|
jca |
|
54 |
53
|
ex |
|
55 |
2 54
|
ralrimi |
|
56 |
3 4 10 23 31 7 17 18 11
|
stoweidlem24 |
|
57 |
56
|
ex |
|
58 |
2 57
|
ralrimi |
|
59 |
4 5 6 7 10 11 12 17 19
|
stoweidlem25 |
|
60 |
59
|
ex |
|
61 |
2 60
|
ralrimi |
|
62 |
|
nfmpt1 |
|
63 |
4 62
|
nfcxfr |
|
64 |
63
|
nfeq2 |
|
65 |
|
fveq1 |
|
66 |
65
|
breq2d |
|
67 |
65
|
breq1d |
|
68 |
66 67
|
anbi12d |
|
69 |
64 68
|
ralbid |
|
70 |
65
|
breq2d |
|
71 |
64 70
|
ralbid |
|
72 |
65
|
breq1d |
|
73 |
64 72
|
ralbid |
|
74 |
69 71 73
|
3anbi123d |
|
75 |
74
|
rspcev |
|
76 |
25 55 58 61 75
|
syl13anc |
|