Metamath Proof Explorer


Theorem stoweidlem46

Description: This lemma proves that sets U(t) as defined in Lemma 1 of BrosowskiDeutsh p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem46.1 _ t U
stoweidlem46.2 _ h Q
stoweidlem46.3 q φ
stoweidlem46.4 t φ
stoweidlem46.5 K = topGen ran .
stoweidlem46.6 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem46.7 W = w J | h Q w = t T | 0 < h t
stoweidlem46.8 T = J
stoweidlem46.9 φ J Comp
stoweidlem46.10 φ A J Cn K
stoweidlem46.11 φ f A g A t T f t + g t A
stoweidlem46.12 φ f A g A t T f t g t A
stoweidlem46.13 φ x t T x A
stoweidlem46.14 φ r T t T r t q A q r q t
stoweidlem46.15 φ U J
stoweidlem46.16 φ Z U
stoweidlem46.17 φ T V
Assertion stoweidlem46 φ T U W

Proof

Step Hyp Ref Expression
1 stoweidlem46.1 _ t U
2 stoweidlem46.2 _ h Q
3 stoweidlem46.3 q φ
4 stoweidlem46.4 t φ
5 stoweidlem46.5 K = topGen ran .
6 stoweidlem46.6 Q = h A | h Z = 0 t T 0 h t h t 1
7 stoweidlem46.7 W = w J | h Q w = t T | 0 < h t
8 stoweidlem46.8 T = J
9 stoweidlem46.9 φ J Comp
10 stoweidlem46.10 φ A J Cn K
11 stoweidlem46.11 φ f A g A t T f t + g t A
12 stoweidlem46.12 φ f A g A t T f t g t A
13 stoweidlem46.13 φ x t T x A
14 stoweidlem46.14 φ r T t T r t q A q r q t
15 stoweidlem46.15 φ U J
16 stoweidlem46.16 φ Z U
17 stoweidlem46.17 φ T V
18 nfv q s T U
19 3 18 nfan q φ s T U
20 nfcv _ t T
21 20 1 nfdif _ t T U
22 21 nfel2 t s T U
23 4 22 nfan t φ s T U
24 9 adantr φ s T U J Comp
25 10 adantr φ s T U A J Cn K
26 11 3adant1r φ s T U f A g A t T f t + g t A
27 12 3adant1r φ s T U f A g A t T f t g t A
28 13 adantlr φ s T U x t T x A
29 14 adantlr φ s T U r T t T r t q A q r q t
30 15 adantr φ s T U U J
31 16 adantr φ s T U Z U
32 simpr φ s T U s T U
33 19 23 2 5 6 8 24 25 26 27 28 29 30 31 32 stoweidlem43 φ s T U h h Q 0 < h s
34 nfv g h Q 0 < h s
35 2 nfel2 h g Q
36 nfv h 0 < g s
37 35 36 nfan h g Q 0 < g s
38 eleq1 h = g h Q g Q
39 fveq1 h = g h s = g s
40 39 breq2d h = g 0 < h s 0 < g s
41 38 40 anbi12d h = g h Q 0 < h s g Q 0 < g s
42 34 37 41 cbvexv1 h h Q 0 < h s g g Q 0 < g s
43 33 42 sylib φ s T U g g Q 0 < g s
44 rabexg T V t T | 0 < g t V
45 17 44 syl φ t T | 0 < g t V
46 45 ad2antrr φ s T U g Q 0 < g s t T | 0 < g t V
47 eldifi s T U s T
48 47 ad2antlr φ s T U g Q 0 < g s s T
49 simprr φ s T U g Q 0 < g s 0 < g s
50 fveq2 t = s g t = g s
51 50 breq2d t = s 0 < g t 0 < g s
52 51 elrab s t T | 0 < g t s T 0 < g s
53 48 49 52 sylanbrc φ s T U g Q 0 < g s s t T | 0 < g t
54 simpll φ s T U g Q 0 < g s φ
55 10 adantr φ g Q A J Cn K
56 simpr φ g Q g Q
57 56 6 eleqtrdi φ g Q g h A | h Z = 0 t T 0 h t h t 1
58 fveq1 h = g h Z = g Z
59 58 eqeq1d h = g h Z = 0 g Z = 0
60 fveq1 h = g h t = g t
61 60 breq2d h = g 0 h t 0 g t
62 60 breq1d h = g h t 1 g t 1
63 61 62 anbi12d h = g 0 h t h t 1 0 g t g t 1
64 63 ralbidv h = g t T 0 h t h t 1 t T 0 g t g t 1
65 59 64 anbi12d h = g h Z = 0 t T 0 h t h t 1 g Z = 0 t T 0 g t g t 1
66 65 elrab g h A | h Z = 0 t T 0 h t h t 1 g A g Z = 0 t T 0 g t g t 1
67 57 66 sylib φ g Q g A g Z = 0 t T 0 g t g t 1
68 67 simpld φ g Q g A
69 55 68 sseldd φ g Q g J Cn K
70 69 ad2ant2r φ s T U g Q 0 < g s g J Cn K
71 nfcv _ t 0
72 nfcv _ t g
73 nfv t g J Cn K
74 4 73 nfan t φ g J Cn K
75 eqid t T | 0 < g t = t T | 0 < g t
76 0xr 0 *
77 76 a1i φ g J Cn K 0 *
78 simpr φ g J Cn K g J Cn K
79 71 72 74 5 8 75 77 78 rfcnpre1 φ g J Cn K t T | 0 < g t J
80 54 70 79 syl2anc φ s T U g Q 0 < g s t T | 0 < g t J
81 eqidd φ g Q t T | 0 < g t = t T | 0 < g t
82 nfv h t T | 0 < g t = t T | 0 < g t
83 nfcv _ h g
84 60 breq2d h = g 0 < h t 0 < g t
85 84 rabbidv h = g t T | 0 < h t = t T | 0 < g t
86 85 eqeq2d h = g t T | 0 < g t = t T | 0 < h t t T | 0 < g t = t T | 0 < g t
87 82 83 2 86 rspcegf g Q t T | 0 < g t = t T | 0 < g t h Q t T | 0 < g t = t T | 0 < h t
88 56 81 87 syl2anc φ g Q h Q t T | 0 < g t = t T | 0 < h t
89 88 ad2ant2r φ s T U g Q 0 < g s h Q t T | 0 < g t = t T | 0 < h t
90 eqeq1 w = t T | 0 < g t w = t T | 0 < h t t T | 0 < g t = t T | 0 < h t
91 90 rexbidv w = t T | 0 < g t h Q w = t T | 0 < h t h Q t T | 0 < g t = t T | 0 < h t
92 91 elrab t T | 0 < g t w J | h Q w = t T | 0 < h t t T | 0 < g t J h Q t T | 0 < g t = t T | 0 < h t
93 80 89 92 sylanbrc φ s T U g Q 0 < g s t T | 0 < g t w J | h Q w = t T | 0 < h t
94 93 7 eleqtrrdi φ s T U g Q 0 < g s t T | 0 < g t W
95 nfcv _ w t T | 0 < g t
96 nfv w s t T | 0 < g t
97 nfrab1 _ w w J | h Q w = t T | 0 < h t
98 7 97 nfcxfr _ w W
99 98 nfel2 w t T | 0 < g t W
100 96 99 nfan w s t T | 0 < g t t T | 0 < g t W
101 eleq2 w = t T | 0 < g t s w s t T | 0 < g t
102 eleq1 w = t T | 0 < g t w W t T | 0 < g t W
103 101 102 anbi12d w = t T | 0 < g t s w w W s t T | 0 < g t t T | 0 < g t W
104 95 100 103 spcegf t T | 0 < g t V s t T | 0 < g t t T | 0 < g t W w s w w W
105 104 imp t T | 0 < g t V s t T | 0 < g t t T | 0 < g t W w s w w W
106 46 53 94 105 syl12anc φ s T U g Q 0 < g s w s w w W
107 43 106 exlimddv φ s T U w s w w W
108 nfcv _ w s
109 108 98 elunif s W w s w w W
110 107 109 sylibr φ s T U s W
111 110 ex φ s T U s W
112 111 ssrdv φ T U W