Metamath Proof Explorer


Theorem stoweidlem48

Description: This lemma is used to prove that x built as in Lemma 2 of BrosowskiDeutsh p. 91, is such that x < ε on A . Here X is used to represent x in the paper, E is used to represent ε in the paper, and D is used to represent A in the paper (because A is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem48.1 i φ
stoweidlem48.2 t φ
stoweidlem48.3 Y = h A | t T 0 h t h t 1
stoweidlem48.4 P = f Y , g Y t T f t g t
stoweidlem48.5 X = seq 1 P U M
stoweidlem48.6 F = t T i 1 M U i t
stoweidlem48.7 Z = t T seq 1 × F t M
stoweidlem48.8 φ M
stoweidlem48.9 φ W : 1 M V
stoweidlem48.10 φ U : 1 M Y
stoweidlem48.11 φ D ran W
stoweidlem48.12 φ D T
stoweidlem48.13 φ i 1 M t W i U i t < E
stoweidlem48.14 φ T V
stoweidlem48.15 φ f A f : T
stoweidlem48.16 φ f A g A t T f t g t A
stoweidlem48.17 φ E +
Assertion stoweidlem48 φ t D X t < E

Proof

Step Hyp Ref Expression
1 stoweidlem48.1 i φ
2 stoweidlem48.2 t φ
3 stoweidlem48.3 Y = h A | t T 0 h t h t 1
4 stoweidlem48.4 P = f Y , g Y t T f t g t
5 stoweidlem48.5 X = seq 1 P U M
6 stoweidlem48.6 F = t T i 1 M U i t
7 stoweidlem48.7 Z = t T seq 1 × F t M
8 stoweidlem48.8 φ M
9 stoweidlem48.9 φ W : 1 M V
10 stoweidlem48.10 φ U : 1 M Y
11 stoweidlem48.11 φ D ran W
12 stoweidlem48.12 φ D T
13 stoweidlem48.13 φ i 1 M t W i U i t < E
14 stoweidlem48.14 φ T V
15 stoweidlem48.15 φ f A f : T
16 stoweidlem48.16 φ f A g A t T f t g t A
17 stoweidlem48.17 φ E +
18 12 sselda φ t D t T
19 nfra1 t t T 0 h t h t 1
20 nfcv _ t A
21 19 20 nfrabw _ t h A | t T 0 h t h t 1
22 3 21 nfcxfr _ t Y
23 3 eleq2i f Y f h A | t T 0 h t h t 1
24 fveq1 h = f h t = f t
25 24 breq2d h = f 0 h t 0 f t
26 24 breq1d h = f h t 1 f t 1
27 25 26 anbi12d h = f 0 h t h t 1 0 f t f t 1
28 27 ralbidv h = f t T 0 h t h t 1 t T 0 f t f t 1
29 28 elrab f h A | t T 0 h t h t 1 f A t T 0 f t f t 1
30 23 29 sylbb f Y f A t T 0 f t f t 1
31 30 simpld f Y f A
32 31 15 sylan2 φ f Y f : T
33 eqid t T f t g t = t T f t g t
34 2 3 33 15 16 stoweidlem16 φ f Y g Y t T f t g t Y
35 1 22 4 5 6 7 14 8 10 32 34 fmuldfeq φ t T X t = Z t
36 18 35 syldan φ t D X t = Z t
37 elnnuz M M 1
38 8 37 sylib φ M 1
39 38 adantr φ t D M 1
40 nfv i t T
41 1 40 nfan i φ t T
42 10 ffvelrnda φ i 1 M U i Y
43 fveq1 h = U i h t = U i t
44 43 breq2d h = U i 0 h t 0 U i t
45 43 breq1d h = U i h t 1 U i t 1
46 44 45 anbi12d h = U i 0 h t h t 1 0 U i t U i t 1
47 46 ralbidv h = U i t T 0 h t h t 1 t T 0 U i t U i t 1
48 47 3 elrab2 U i Y U i A t T 0 U i t U i t 1
49 42 48 sylib φ i 1 M U i A t T 0 U i t U i t 1
50 49 simpld φ i 1 M U i A
51 simpl φ i 1 M φ
52 51 50 jca φ i 1 M φ U i A
53 eleq1 f = U i f A U i A
54 53 anbi2d f = U i φ f A φ U i A
55 feq1 f = U i f : T U i : T
56 54 55 imbi12d f = U i φ f A f : T φ U i A U i : T
57 56 15 vtoclg U i A φ U i A U i : T
58 50 52 57 sylc φ i 1 M U i : T
59 58 adantlr φ t T i 1 M U i : T
60 simplr φ t T i 1 M t T
61 59 60 ffvelrnd φ t T i 1 M U i t
62 eqid i 1 M U i t = i 1 M U i t
63 41 61 62 fmptdf φ t T i 1 M U i t : 1 M
64 simpr φ t T t T
65 ovex 1 M V
66 mptexg 1 M V i 1 M U i t V
67 65 66 mp1i φ t T i 1 M U i t V
68 6 fvmpt2 t T i 1 M U i t V F t = i 1 M U i t
69 64 67 68 syl2anc φ t T F t = i 1 M U i t
70 69 feq1d φ t T F t : 1 M i 1 M U i t : 1 M
71 63 70 mpbird φ t T F t : 1 M
72 18 71 syldan φ t D F t : 1 M
73 72 ffvelrnda φ t D k 1 M F t k
74 remulcl k j k j
75 74 adantl φ t D k j k j
76 39 73 75 seqcl φ t D seq 1 × F t M
77 7 fvmpt2 t T seq 1 × F t M Z t = seq 1 × F t M
78 18 76 77 syl2anc φ t D Z t = seq 1 × F t M
79 nfcv _ i T
80 nfmpt1 _ i i 1 M U i t
81 79 80 nfmpt _ i t T i 1 M U i t
82 6 81 nfcxfr _ i F
83 nfcv _ i t
84 82 83 nffv _ i F t
85 nfv i t D
86 1 85 nfan i φ t D
87 nfcv _ j seq 1 × F t
88 eqid seq 1 × F t = seq 1 × F t
89 8 adantr φ t D M
90 simpll φ t D i 1 M φ
91 simpr φ t D i 1 M i 1 M
92 18 adantr φ t D i 1 M t T
93 49 simprd φ i 1 M t T 0 U i t U i t 1
94 93 r19.21bi φ i 1 M t T 0 U i t U i t 1
95 94 simpld φ i 1 M t T 0 U i t
96 90 91 92 95 syl21anc φ t D i 1 M 0 U i t
97 69 fveq1d φ t T F t i = i 1 M U i t i
98 90 92 97 syl2anc φ t D i 1 M F t i = i 1 M U i t i
99 90 92 91 61 syl21anc φ t D i 1 M U i t
100 62 fvmpt2 i 1 M U i t i 1 M U i t i = U i t
101 91 99 100 syl2anc φ t D i 1 M i 1 M U i t i = U i t
102 98 101 eqtrd φ t D i 1 M F t i = U i t
103 96 102 breqtrrd φ t D i 1 M 0 F t i
104 94 simprd φ i 1 M t T U i t 1
105 90 91 92 104 syl21anc φ t D i 1 M U i t 1
106 102 105 eqbrtrd φ t D i 1 M F t i 1
107 17 adantr φ t D E +
108 11 sselda φ t D t ran W
109 eluni t ran W w t w w ran W
110 108 109 sylib φ t D w t w w ran W
111 ffn W : 1 M V W Fn 1 M
112 fvelrnb W Fn 1 M w ran W j 1 M W j = w
113 9 111 112 3syl φ w ran W j 1 M W j = w
114 113 biimpa φ w ran W j 1 M W j = w
115 114 adantrl φ t w w ran W j 1 M W j = w
116 simplr φ t w W j = w t w
117 simpr φ t w W j = w W j = w
118 116 117 eleqtrrd φ t w W j = w t W j
119 118 ex φ t w W j = w t W j
120 119 reximdv φ t w j 1 M W j = w j 1 M t W j
121 120 adantrr φ t w w ran W j 1 M W j = w j 1 M t W j
122 115 121 mpd φ t w w ran W j 1 M t W j
123 122 ex φ t w w ran W j 1 M t W j
124 123 exlimdv φ w t w w ran W j 1 M t W j
125 124 adantr φ t D w t w w ran W j 1 M t W j
126 110 125 mpd φ t D j 1 M t W j
127 simplll φ t D j 1 M t W j φ
128 simplr φ t D j 1 M t W j j 1 M
129 simpr φ t D j 1 M t W j t W j
130 nfv i j 1 M
131 nfv i t W j
132 1 130 131 nf3an i φ j 1 M t W j
133 nfv i U j t < E
134 132 133 nfim i φ j 1 M t W j U j t < E
135 eleq1 i = j i 1 M j 1 M
136 fveq2 i = j W i = W j
137 136 eleq2d i = j t W i t W j
138 135 137 3anbi23d i = j φ i 1 M t W i φ j 1 M t W j
139 fveq2 i = j U i = U j
140 139 fveq1d i = j U i t = U j t
141 140 breq1d i = j U i t < E U j t < E
142 138 141 imbi12d i = j φ i 1 M t W i U i t < E φ j 1 M t W j U j t < E
143 13 r19.21bi φ i 1 M t W i U i t < E
144 143 3impa φ i 1 M t W i U i t < E
145 134 142 144 chvarfv φ j 1 M t W j U j t < E
146 127 128 129 145 syl3anc φ t D j 1 M t W j U j t < E
147 146 ex φ t D j 1 M t W j U j t < E
148 147 reximdva φ t D j 1 M t W j j 1 M U j t < E
149 126 148 mpd φ t D j 1 M U j t < E
150 86 130 nfan i φ t D j 1 M
151 nfcv _ i j
152 84 151 nffv _ i F t j
153 152 nfeq1 i F t j = U j t
154 150 153 nfim i φ t D j 1 M F t j = U j t
155 135 anbi2d i = j φ t D i 1 M φ t D j 1 M
156 fveq2 i = j F t i = F t j
157 156 140 eqeq12d i = j F t i = U i t F t j = U j t
158 155 157 imbi12d i = j φ t D i 1 M F t i = U i t φ t D j 1 M F t j = U j t
159 154 158 102 chvarfv φ t D j 1 M F t j = U j t
160 159 breq1d φ t D j 1 M F t j < E U j t < E
161 160 biimprd φ t D j 1 M U j t < E F t j < E
162 161 reximdva φ t D j 1 M U j t < E j 1 M F t j < E
163 149 162 mpd φ t D j 1 M F t j < E
164 84 86 87 88 89 72 103 106 107 163 fmul01lt1 φ t D seq 1 × F t M < E
165 78 164 eqbrtrd φ t D Z t < E
166 36 165 eqbrtrd φ t D X t < E
167 166 ex φ t D X t < E
168 2 167 ralrimi φ t D X t < E