Metamath Proof Explorer


Theorem stoweidlem5

Description: There exists a δ as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: 0 < δ < 1 , p >= δ on T \ U . Here D is used to represent δ in the paper and Q to represent T \ U in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem5.1 t φ
stoweidlem5.2 D = if C 1 2 C 1 2
stoweidlem5.3 φ P : T
stoweidlem5.4 φ Q T
stoweidlem5.5 φ C +
stoweidlem5.6 φ t Q C P t
Assertion stoweidlem5 φ d d + d < 1 t Q d P t

Proof

Step Hyp Ref Expression
1 stoweidlem5.1 t φ
2 stoweidlem5.2 D = if C 1 2 C 1 2
3 stoweidlem5.3 φ P : T
4 stoweidlem5.4 φ Q T
5 stoweidlem5.5 φ C +
6 stoweidlem5.6 φ t Q C P t
7 halfre 1 2
8 halfgt0 0 < 1 2
9 7 8 elrpii 1 2 +
10 ifcl C + 1 2 + if C 1 2 C 1 2 +
11 5 9 10 sylancl φ if C 1 2 C 1 2 +
12 2 11 eqeltrid φ D +
13 12 rpred φ D
14 7 a1i φ 1 2
15 1red φ 1
16 5 rpred φ C
17 min2 C 1 2 if C 1 2 C 1 2 1 2
18 16 7 17 sylancl φ if C 1 2 C 1 2 1 2
19 2 18 eqbrtrid φ D 1 2
20 halflt1 1 2 < 1
21 20 a1i φ 1 2 < 1
22 13 14 15 19 21 lelttrd φ D < 1
23 11 rpred φ if C 1 2 C 1 2
24 23 adantr φ t Q if C 1 2 C 1 2
25 16 adantr φ t Q C
26 3 adantr φ t Q P : T
27 4 sselda φ t Q t T
28 26 27 ffvelrnd φ t Q P t
29 min1 C 1 2 if C 1 2 C 1 2 C
30 16 7 29 sylancl φ if C 1 2 C 1 2 C
31 30 adantr φ t Q if C 1 2 C 1 2 C
32 6 r19.21bi φ t Q C P t
33 24 25 28 31 32 letrd φ t Q if C 1 2 C 1 2 P t
34 2 33 eqbrtrid φ t Q D P t
35 34 ex φ t Q D P t
36 1 35 ralrimi φ t Q D P t
37 eleq1 d = D d + D +
38 breq1 d = D d < 1 D < 1
39 breq1 d = D d P t D P t
40 39 ralbidv d = D t Q d P t t Q D P t
41 37 38 40 3anbi123d d = D d + d < 1 t Q d P t D + D < 1 t Q D P t
42 41 spcegv D + D + D < 1 t Q D P t d d + d < 1 t Q d P t
43 12 42 syl φ D + D < 1 t Q D P t d d + d < 1 t Q d P t
44 12 22 36 43 mp3and φ d d + d < 1 t Q d P t