Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem50.1 |
|
2 |
|
stoweidlem50.2 |
|
3 |
|
stoweidlem50.3 |
|
4 |
|
stoweidlem50.4 |
|
5 |
|
stoweidlem50.5 |
|
6 |
|
stoweidlem50.6 |
|
7 |
|
stoweidlem50.7 |
|
8 |
|
stoweidlem50.8 |
|
9 |
|
stoweidlem50.9 |
|
10 |
|
stoweidlem50.10 |
|
11 |
|
stoweidlem50.11 |
|
12 |
|
stoweidlem50.12 |
|
13 |
|
stoweidlem50.13 |
|
14 |
|
stoweidlem50.14 |
|
15 |
|
stoweidlem50.15 |
|
16 |
|
nfrab1 |
|
17 |
4 16
|
nfcxfr |
|
18 |
|
nfv |
|
19 |
9 7
|
sseqtrdi |
|
20 |
8
|
uniexd |
|
21 |
6 20
|
eqeltrid |
|
22 |
1 17 18 2 3 4 5 6 8 19 10 11 12 13 14 15 21
|
stoweidlem46 |
|
23 |
|
dfin4 |
|
24 |
|
elssuni |
|
25 |
14 24
|
syl |
|
26 |
25 6
|
sseqtrrdi |
|
27 |
|
sseqin2 |
|
28 |
26 27
|
sylib |
|
29 |
23 28
|
eqtr3id |
|
30 |
29 14
|
eqeltrd |
|
31 |
|
cmptop |
|
32 |
8 31
|
syl |
|
33 |
|
difssd |
|
34 |
6
|
iscld2 |
|
35 |
32 33 34
|
syl2anc |
|
36 |
30 35
|
mpbird |
|
37 |
|
cmpcld |
|
38 |
8 36 37
|
syl2anc |
|
39 |
6
|
cmpsub |
|
40 |
32 33 39
|
syl2anc |
|
41 |
38 40
|
mpbid |
|
42 |
|
ssrab2 |
|
43 |
5 42
|
eqsstri |
|
44 |
5 8
|
rabexd |
|
45 |
|
elpwg |
|
46 |
44 45
|
syl |
|
47 |
43 46
|
mpbiri |
|
48 |
|
unieq |
|
49 |
48
|
sseq2d |
|
50 |
|
pweq |
|
51 |
50
|
ineq1d |
|
52 |
51
|
rexeqdv |
|
53 |
49 52
|
imbi12d |
|
54 |
53
|
rspccva |
|
55 |
41 47 54
|
syl2anc |
|
56 |
55
|
imp |
|
57 |
|
df-rex |
|
58 |
56 57
|
sylib |
|
59 |
|
elinel2 |
|
60 |
59
|
ad2antrl |
|
61 |
|
elinel1 |
|
62 |
61
|
ad2antrl |
|
63 |
62
|
elpwid |
|
64 |
|
simprr |
|
65 |
60 63 64
|
3jca |
|
66 |
65
|
ex |
|
67 |
66
|
eximdv |
|
68 |
58 67
|
mpd |
|
69 |
22 68
|
mpdan |
|