Metamath Proof Explorer


Theorem stoweidlem51

Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent A in the paper, because here A is used for the subalgebra of functions. E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem51.1 i φ
stoweidlem51.2 t φ
stoweidlem51.3 w φ
stoweidlem51.4 _ w V
stoweidlem51.5 Y = h A | t T 0 h t h t 1
stoweidlem51.6 P = f Y , g Y t T f t g t
stoweidlem51.7 X = seq 1 P U M
stoweidlem51.8 F = t T i 1 M U i t
stoweidlem51.9 Z = t T seq 1 × F t M
stoweidlem51.10 φ M
stoweidlem51.11 φ W : 1 M V
stoweidlem51.12 φ U : 1 M Y
stoweidlem51.13 φ w V w T
stoweidlem51.14 φ D ran W
stoweidlem51.15 φ D T
stoweidlem51.16 φ B T
stoweidlem51.17 φ i 1 M t W i U i t < E M
stoweidlem51.18 φ i 1 M t B 1 E M < U i t
stoweidlem51.19 φ f A g A t T f t g t A
stoweidlem51.20 φ f A f : T
stoweidlem51.21 φ T V
stoweidlem51.22 φ E +
stoweidlem51.23 φ E < 1 3
Assertion stoweidlem51 φ x x A t T 0 x t x t 1 t D x t < E t B 1 E < x t

Proof

Step Hyp Ref Expression
1 stoweidlem51.1 i φ
2 stoweidlem51.2 t φ
3 stoweidlem51.3 w φ
4 stoweidlem51.4 _ w V
5 stoweidlem51.5 Y = h A | t T 0 h t h t 1
6 stoweidlem51.6 P = f Y , g Y t T f t g t
7 stoweidlem51.7 X = seq 1 P U M
8 stoweidlem51.8 F = t T i 1 M U i t
9 stoweidlem51.9 Z = t T seq 1 × F t M
10 stoweidlem51.10 φ M
11 stoweidlem51.11 φ W : 1 M V
12 stoweidlem51.12 φ U : 1 M Y
13 stoweidlem51.13 φ w V w T
14 stoweidlem51.14 φ D ran W
15 stoweidlem51.15 φ D T
16 stoweidlem51.16 φ B T
17 stoweidlem51.17 φ i 1 M t W i U i t < E M
18 stoweidlem51.18 φ i 1 M t B 1 E M < U i t
19 stoweidlem51.19 φ f A g A t T f t g t A
20 stoweidlem51.20 φ f A f : T
21 stoweidlem51.21 φ T V
22 stoweidlem51.22 φ E +
23 stoweidlem51.23 φ E < 1 3
24 ssrab2 h A | t T 0 h t h t 1 A
25 5 24 eqsstri Y A
26 1zzd φ 1
27 10 nnzd φ M
28 10 nnge1d φ 1 M
29 10 nnred φ M
30 29 leidd φ M M
31 26 27 27 28 30 elfzd φ M 1 M
32 eqid t T f t g t = t T f t g t
33 2 5 32 20 19 stoweidlem16 φ f Y g Y t T f t g t Y
34 6 7 31 12 33 21 fmulcl φ X Y
35 25 34 sselid φ X A
36 5 eleq2i X Y X h A | t T 0 h t h t 1
37 nfcv _ h 1
38 nfrab1 _ h h A | t T 0 h t h t 1
39 5 38 nfcxfr _ h Y
40 nfcv _ h t T f t g t
41 39 39 40 nfmpo _ h f Y , g Y t T f t g t
42 6 41 nfcxfr _ h P
43 nfcv _ h U
44 37 42 43 nfseq _ h seq 1 P U
45 nfcv _ h M
46 44 45 nffv _ h seq 1 P U M
47 7 46 nfcxfr _ h X
48 nfcv _ h A
49 nfcv _ h T
50 nfcv _ h 0
51 nfcv _ h
52 nfcv _ h t
53 47 52 nffv _ h X t
54 50 51 53 nfbr h 0 X t
55 53 51 37 nfbr h X t 1
56 54 55 nfan h 0 X t X t 1
57 49 56 nfralw h t T 0 X t X t 1
58 nfcv _ t 1
59 nfra1 t t T 0 h t h t 1
60 nfcv _ t A
61 59 60 nfrabw _ t h A | t T 0 h t h t 1
62 5 61 nfcxfr _ t Y
63 nfmpt1 _ t t T f t g t
64 62 62 63 nfmpo _ t f Y , g Y t T f t g t
65 6 64 nfcxfr _ t P
66 nfcv _ t U
67 58 65 66 nfseq _ t seq 1 P U
68 nfcv _ t M
69 67 68 nffv _ t seq 1 P U M
70 7 69 nfcxfr _ t X
71 70 nfeq2 t h = X
72 fveq1 h = X h t = X t
73 72 breq2d h = X 0 h t 0 X t
74 72 breq1d h = X h t 1 X t 1
75 73 74 anbi12d h = X 0 h t h t 1 0 X t X t 1
76 71 75 ralbid h = X t T 0 h t h t 1 t T 0 X t X t 1
77 47 48 57 76 elrabf X h A | t T 0 h t h t 1 X A t T 0 X t X t 1
78 36 77 bitri X Y X A t T 0 X t X t 1
79 34 78 sylib φ X A t T 0 X t X t 1
80 79 simprd φ t T 0 X t X t 1
81 nfv t i 1 M
82 2 81 nfan t φ i 1 M
83 12 ffvelrnda φ i 1 M U i Y
84 fveq1 h = U i h t = U i t
85 84 breq2d h = U i 0 h t 0 U i t
86 84 breq1d h = U i h t 1 U i t 1
87 85 86 anbi12d h = U i 0 h t h t 1 0 U i t U i t 1
88 87 ralbidv h = U i t T 0 h t h t 1 t T 0 U i t U i t 1
89 88 5 elrab2 U i Y U i A t T 0 U i t U i t 1
90 89 simplbi U i Y U i A
91 83 90 syl φ i 1 M U i A
92 eleq1 f = U i f A U i A
93 92 anbi2d f = U i φ f A φ U i A
94 feq1 f = U i f : T U i : T
95 93 94 imbi12d f = U i φ f A f : T φ U i A U i : T
96 20 a1i f A φ f A f : T
97 95 96 vtoclga U i A φ U i A U i : T
98 97 anabsi7 φ U i A U i : T
99 91 98 syldan φ i 1 M U i : T
100 99 adantr φ i 1 M t W i U i : T
101 11 ffvelrnda φ i 1 M W i V
102 simpl φ i 1 M φ
103 102 101 jca φ i 1 M φ W i V
104 4 nfel2 w W i V
105 3 104 nfan w φ W i V
106 nfv w W i T
107 105 106 nfim w φ W i V W i T
108 eleq1 w = W i w V W i V
109 108 anbi2d w = W i φ w V φ W i V
110 sseq1 w = W i w T W i T
111 109 110 imbi12d w = W i φ w V w T φ W i V W i T
112 107 111 13 vtoclg1f W i V φ W i V W i T
113 101 103 112 sylc φ i 1 M W i T
114 113 sselda φ i 1 M t W i t T
115 100 114 ffvelrnd φ i 1 M t W i U i t
116 22 rpred φ E
117 116 ad2antrr φ i 1 M t W i E
118 29 ad2antrr φ i 1 M t W i M
119 10 nnne0d φ M 0
120 119 ad2antrr φ i 1 M t W i M 0
121 117 118 120 redivcld φ i 1 M t W i E M
122 17 r19.21bi φ i 1 M t W i U i t < E M
123 1red φ 1
124 0lt1 0 < 1
125 124 a1i φ 0 < 1
126 10 nngt0d φ 0 < M
127 22 rpregt0d φ E 0 < E
128 lediv2 1 0 < 1 M 0 < M E 0 < E 1 M E M E 1
129 123 125 29 126 127 128 syl221anc φ 1 M E M E 1
130 28 129 mpbid φ E M E 1
131 22 rpcnd φ E
132 131 div1d φ E 1 = E
133 130 132 breqtrd φ E M E
134 133 ad2antrr φ i 1 M t W i E M E
135 115 121 117 122 134 ltletrd φ i 1 M t W i U i t < E
136 135 ex φ i 1 M t W i U i t < E
137 82 136 ralrimi φ i 1 M t W i U i t < E
138 1 2 5 6 7 8 9 10 11 12 14 15 137 21 20 19 22 stoweidlem48 φ t D X t < E
139 25 sseli f Y f A
140 139 20 sylan2 φ f Y f : T
141 1 2 62 6 7 8 9 10 12 18 22 23 140 33 21 16 stoweidlem42 φ t B 1 E < X t
142 80 138 141 3jca φ t T 0 X t X t 1 t D X t < E t B 1 E < X t
143 35 142 jca φ X A t T 0 X t X t 1 t D X t < E t B 1 E < X t
144 eleq1 x = X x A X A
145 70 nfeq2 t x = X
146 fveq1 x = X x t = X t
147 146 breq2d x = X 0 x t 0 X t
148 146 breq1d x = X x t 1 X t 1
149 147 148 anbi12d x = X 0 x t x t 1 0 X t X t 1
150 145 149 ralbid x = X t T 0 x t x t 1 t T 0 X t X t 1
151 146 breq1d x = X x t < E X t < E
152 145 151 ralbid x = X t D x t < E t D X t < E
153 146 breq2d x = X 1 E < x t 1 E < X t
154 145 153 ralbid x = X t B 1 E < x t t B 1 E < X t
155 150 152 154 3anbi123d x = X t T 0 x t x t 1 t D x t < E t B 1 E < x t t T 0 X t X t 1 t D X t < E t B 1 E < X t
156 144 155 anbi12d x = X x A t T 0 x t x t 1 t D x t < E t B 1 E < x t X A t T 0 X t X t 1 t D X t < E t B 1 E < X t
157 156 spcegv X A X A t T 0 X t X t 1 t D X t < E t B 1 E < X t x x A t T 0 x t x t 1 t D x t < E t B 1 E < x t
158 35 143 157 sylc φ x x A t T 0 x t x t 1 t D x t < E t B 1 E < x t