Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem52.1 |
|
2 |
|
stoweidlem52.2 |
|
3 |
|
stoweidlem52.3 |
|
4 |
|
stoweidlem52.4 |
|
5 |
|
stoweidlem52.5 |
|
6 |
|
stoweidlem52.7 |
|
7 |
|
stoweidlem52.8 |
|
8 |
|
stoweidlem52.9 |
|
9 |
|
stoweidlem52.10 |
|
10 |
|
stoweidlem52.11 |
|
11 |
|
stoweidlem52.12 |
|
12 |
|
stoweidlem52.13 |
|
13 |
|
stoweidlem52.14 |
|
14 |
|
stoweidlem52.15 |
|
15 |
|
stoweidlem52.16 |
|
16 |
|
stoweidlem52.17 |
|
17 |
|
stoweidlem52.18 |
|
18 |
|
stoweidlem52.19 |
|
19 |
|
stoweidlem52.20 |
|
20 |
|
nfcv |
|
21 |
12
|
rpred |
|
22 |
21
|
rehalfcld |
|
23 |
22
|
rexrd |
|
24 |
8 7
|
sseqtrdi |
|
25 |
24 16
|
sseldd |
|
26 |
20 3 2 4 6 5 23 25
|
rfcnpre2 |
|
27 |
|
elssuni |
|
28 |
14 27
|
syl |
|
29 |
28 6
|
sseqtrrdi |
|
30 |
29 15
|
sseldd |
|
31 |
|
2re |
|
32 |
31
|
a1i |
|
33 |
12
|
rpgt0d |
|
34 |
|
2pos |
|
35 |
34
|
a1i |
|
36 |
21 32 33 35
|
divgt0d |
|
37 |
18 36
|
eqbrtrd |
|
38 |
|
nfcv |
|
39 |
|
nfcv |
|
40 |
3 38
|
nffv |
|
41 |
|
nfcv |
|
42 |
40 41 20
|
nfbr |
|
43 |
|
fveq2 |
|
44 |
43
|
breq1d |
|
45 |
38 39 42 44
|
elrabf |
|
46 |
30 37 45
|
sylanbrc |
|
47 |
46 5
|
eleqtrrdi |
|
48 |
|
nfrab1 |
|
49 |
5 48
|
nfcxfr |
|
50 |
8 16
|
sseldd |
|
51 |
4 6 7 50
|
fcnre |
|
52 |
51
|
adantr |
|
53 |
5
|
rabeq2i |
|
54 |
53
|
biimpi |
|
55 |
54
|
adantl |
|
56 |
55
|
simpld |
|
57 |
52 56
|
ffvelrnd |
|
58 |
22
|
adantr |
|
59 |
21
|
adantr |
|
60 |
55
|
simprd |
|
61 |
|
halfpos |
|
62 |
21 61
|
syl |
|
63 |
33 62
|
mpbid |
|
64 |
63
|
adantr |
|
65 |
57 58 59 60 64
|
lttrd |
|
66 |
65
|
adantr |
|
67 |
21
|
ad2antrr |
|
68 |
57
|
adantr |
|
69 |
19
|
ad2antrr |
|
70 |
56
|
anim1i |
|
71 |
|
eldif |
|
72 |
70 71
|
sylibr |
|
73 |
|
rsp |
|
74 |
69 72 73
|
sylc |
|
75 |
67 68 74
|
lensymd |
|
76 |
66 75
|
condan |
|
77 |
76
|
ex |
|
78 |
2 49 1 77
|
ssrd |
|
79 |
|
nfv |
|
80 |
2 79
|
nfan |
|
81 |
|
nfv |
|
82 |
80 81
|
nfan |
|
83 |
|
nfra1 |
|
84 |
|
nfra1 |
|
85 |
|
nfra1 |
|
86 |
83 84 85
|
nf3an |
|
87 |
82 86
|
nfan |
|
88 |
|
eqid |
|
89 |
|
eqid |
|
90 |
|
ssrab2 |
|
91 |
5 90
|
eqsstri |
|
92 |
|
simplr |
|
93 |
|
simplll |
|
94 |
8
|
sselda |
|
95 |
4 6 7 94
|
fcnre |
|
96 |
93 92 95
|
syl2anc |
|
97 |
8
|
sselda |
|
98 |
4 6 7 97
|
fcnre |
|
99 |
93 98
|
sylan |
|
100 |
93 9
|
syl3an1 |
|
101 |
93 10
|
syl3an1 |
|
102 |
93 11
|
sylan |
|
103 |
|
simpllr |
|
104 |
|
simpr1 |
|
105 |
|
simpr2 |
|
106 |
|
simpr3 |
|
107 |
87 88 89 91 92 96 99 100 101 102 103 104 105 106
|
stoweidlem41 |
|
108 |
12
|
adantr |
|
109 |
13
|
adantr |
|
110 |
16
|
adantr |
|
111 |
51
|
adantr |
|
112 |
17
|
adantr |
|
113 |
19
|
adantr |
|
114 |
98
|
adantlr |
|
115 |
9
|
3adant1r |
|
116 |
10
|
3adant1r |
|
117 |
11
|
adantlr |
|
118 |
|
simpr |
|
119 |
3 80 5 108 109 110 111 112 113 114 115 116 117 118
|
stoweidlem49 |
|
120 |
107 119
|
r19.29a |
|
121 |
120
|
ralrimiva |
|
122 |
47 78 121
|
jca31 |
|
123 |
|
eleq2 |
|
124 |
|
sseq1 |
|
125 |
123 124
|
anbi12d |
|
126 |
|
nfcv |
|
127 |
126 49
|
raleqf |
|
128 |
127
|
3anbi2d |
|
129 |
128
|
rexbidv |
|
130 |
129
|
ralbidv |
|
131 |
125 130
|
anbi12d |
|
132 |
131
|
rspcev |
|
133 |
26 122 132
|
syl2anc |
|