Metamath Proof Explorer


Theorem stoweidlem52

Description: There exists a neighborhood V as in Lemma 1 of BrosowskiDeutsh p. 90. Here Z is used to represent t_0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem52.1 _ t U
stoweidlem52.2 t φ
stoweidlem52.3 _ t P
stoweidlem52.4 K = topGen ran .
stoweidlem52.5 V = t T | P t < D 2
stoweidlem52.7 T = J
stoweidlem52.8 C = J Cn K
stoweidlem52.9 φ A C
stoweidlem52.10 φ f A g A t T f t + g t A
stoweidlem52.11 φ f A g A t T f t g t A
stoweidlem52.12 φ a t T a A
stoweidlem52.13 φ D +
stoweidlem52.14 φ D < 1
stoweidlem52.15 φ U J
stoweidlem52.16 φ Z U
stoweidlem52.17 φ P A
stoweidlem52.18 φ t T 0 P t P t 1
stoweidlem52.19 φ P Z = 0
stoweidlem52.20 φ t T U D P t
Assertion stoweidlem52 φ v J Z v v U e + x A t T 0 x t x t 1 t v x t < e t T U 1 e < x t

Proof

Step Hyp Ref Expression
1 stoweidlem52.1 _ t U
2 stoweidlem52.2 t φ
3 stoweidlem52.3 _ t P
4 stoweidlem52.4 K = topGen ran .
5 stoweidlem52.5 V = t T | P t < D 2
6 stoweidlem52.7 T = J
7 stoweidlem52.8 C = J Cn K
8 stoweidlem52.9 φ A C
9 stoweidlem52.10 φ f A g A t T f t + g t A
10 stoweidlem52.11 φ f A g A t T f t g t A
11 stoweidlem52.12 φ a t T a A
12 stoweidlem52.13 φ D +
13 stoweidlem52.14 φ D < 1
14 stoweidlem52.15 φ U J
15 stoweidlem52.16 φ Z U
16 stoweidlem52.17 φ P A
17 stoweidlem52.18 φ t T 0 P t P t 1
18 stoweidlem52.19 φ P Z = 0
19 stoweidlem52.20 φ t T U D P t
20 nfcv _ t D 2
21 12 rpred φ D
22 21 rehalfcld φ D 2
23 22 rexrd φ D 2 *
24 8 7 sseqtrdi φ A J Cn K
25 24 16 sseldd φ P J Cn K
26 20 3 2 4 6 5 23 25 rfcnpre2 φ V J
27 elssuni U J U J
28 14 27 syl φ U J
29 28 6 sseqtrrdi φ U T
30 29 15 sseldd φ Z T
31 2re 2
32 31 a1i φ 2
33 12 rpgt0d φ 0 < D
34 2pos 0 < 2
35 34 a1i φ 0 < 2
36 21 32 33 35 divgt0d φ 0 < D 2
37 18 36 eqbrtrd φ P Z < D 2
38 nfcv _ t Z
39 nfcv _ t T
40 3 38 nffv _ t P Z
41 nfcv _ t <
42 40 41 20 nfbr t P Z < D 2
43 fveq2 t = Z P t = P Z
44 43 breq1d t = Z P t < D 2 P Z < D 2
45 38 39 42 44 elrabf Z t T | P t < D 2 Z T P Z < D 2
46 30 37 45 sylanbrc φ Z t T | P t < D 2
47 46 5 eleqtrrdi φ Z V
48 nfrab1 _ t t T | P t < D 2
49 5 48 nfcxfr _ t V
50 8 16 sseldd φ P C
51 4 6 7 50 fcnre φ P : T
52 51 adantr φ t V P : T
53 5 rabeq2i t V t T P t < D 2
54 53 biimpi t V t T P t < D 2
55 54 adantl φ t V t T P t < D 2
56 55 simpld φ t V t T
57 52 56 ffvelrnd φ t V P t
58 22 adantr φ t V D 2
59 21 adantr φ t V D
60 55 simprd φ t V P t < D 2
61 halfpos D 0 < D D 2 < D
62 21 61 syl φ 0 < D D 2 < D
63 33 62 mpbid φ D 2 < D
64 63 adantr φ t V D 2 < D
65 57 58 59 60 64 lttrd φ t V P t < D
66 65 adantr φ t V ¬ t U P t < D
67 21 ad2antrr φ t V ¬ t U D
68 57 adantr φ t V ¬ t U P t
69 19 ad2antrr φ t V ¬ t U t T U D P t
70 56 anim1i φ t V ¬ t U t T ¬ t U
71 eldif t T U t T ¬ t U
72 70 71 sylibr φ t V ¬ t U t T U
73 rsp t T U D P t t T U D P t
74 69 72 73 sylc φ t V ¬ t U D P t
75 67 68 74 lensymd φ t V ¬ t U ¬ P t < D
76 66 75 condan φ t V t U
77 76 ex φ t V t U
78 2 49 1 77 ssrd φ V U
79 nfv t e +
80 2 79 nfan t φ e +
81 nfv t y A
82 80 81 nfan t φ e + y A
83 nfra1 t t T 0 y t y t 1
84 nfra1 t t V 1 e < y t
85 nfra1 t t T U y t < e
86 83 84 85 nf3an t t T 0 y t y t 1 t V 1 e < y t t T U y t < e
87 82 86 nfan t φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e
88 eqid t T 1 y t = t T 1 y t
89 eqid t T 1 = t T 1
90 ssrab2 t T | P t < D 2 T
91 5 90 eqsstri V T
92 simplr φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e y A
93 simplll φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e φ
94 8 sselda φ y A y C
95 4 6 7 94 fcnre φ y A y : T
96 93 92 95 syl2anc φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e y : T
97 8 sselda φ f A f C
98 4 6 7 97 fcnre φ f A f : T
99 93 98 sylan φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e f A f : T
100 93 9 syl3an1 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e f A g A t T f t + g t A
101 93 10 syl3an1 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e f A g A t T f t g t A
102 93 11 sylan φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e a t T a A
103 simpllr φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e e +
104 simpr1 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e t T 0 y t y t 1
105 simpr2 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e t V 1 e < y t
106 simpr3 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e t T U y t < e
107 87 88 89 91 92 96 99 100 101 102 103 104 105 106 stoweidlem41 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
108 12 adantr φ e + D +
109 13 adantr φ e + D < 1
110 16 adantr φ e + P A
111 51 adantr φ e + P : T
112 17 adantr φ e + t T 0 P t P t 1
113 19 adantr φ e + t T U D P t
114 98 adantlr φ e + f A f : T
115 9 3adant1r φ e + f A g A t T f t + g t A
116 10 3adant1r φ e + f A g A t T f t g t A
117 11 adantlr φ e + a t T a A
118 simpr φ e + e +
119 3 80 5 108 109 110 111 112 113 114 115 116 117 118 stoweidlem49 φ e + y A t T 0 y t y t 1 t V 1 e < y t t T U y t < e
120 107 119 r19.29a φ e + x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
121 120 ralrimiva φ e + x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
122 47 78 121 jca31 φ Z V V U e + x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
123 eleq2 v = V Z v Z V
124 sseq1 v = V v U V U
125 123 124 anbi12d v = V Z v v U Z V V U
126 nfcv _ t v
127 126 49 raleqf v = V t v x t < e t V x t < e
128 127 3anbi2d v = V t T 0 x t x t 1 t v x t < e t T U 1 e < x t t T 0 x t x t 1 t V x t < e t T U 1 e < x t
129 128 rexbidv v = V x A t T 0 x t x t 1 t v x t < e t T U 1 e < x t x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
130 129 ralbidv v = V e + x A t T 0 x t x t 1 t v x t < e t T U 1 e < x t e + x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
131 125 130 anbi12d v = V Z v v U e + x A t T 0 x t x t 1 t v x t < e t T U 1 e < x t Z V V U e + x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t
132 131 rspcev V J Z V V U e + x A t T 0 x t x t 1 t V x t < e t T U 1 e < x t v J Z v v U e + x A t T 0 x t x t 1 t v x t < e t T U 1 e < x t
133 26 122 132 syl2anc φ v J Z v v U e + x A t T 0 x t x t 1 t v x t < e t T U 1 e < x t