| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem56.1 |
|
| 2 |
|
stoweidlem56.2 |
|
| 3 |
|
stoweidlem56.3 |
|
| 4 |
|
stoweidlem56.4 |
|
| 5 |
|
stoweidlem56.5 |
|
| 6 |
|
stoweidlem56.6 |
|
| 7 |
|
stoweidlem56.7 |
|
| 8 |
|
stoweidlem56.8 |
|
| 9 |
|
stoweidlem56.9 |
|
| 10 |
|
stoweidlem56.10 |
|
| 11 |
|
stoweidlem56.11 |
|
| 12 |
|
stoweidlem56.12 |
|
| 13 |
|
stoweidlem56.13 |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
stoweidlem55 |
|
| 17 |
|
df-rex |
|
| 18 |
16 17
|
sylib |
|
| 19 |
|
simpl |
|
| 20 |
|
simprl |
|
| 21 |
|
simprr3 |
|
| 22 |
|
nfv |
|
| 23 |
|
nfra1 |
|
| 24 |
2 22 23
|
nf3an |
|
| 25 |
4
|
3ad2ant1 |
|
| 26 |
7
|
sselda |
|
| 27 |
26 6
|
eleqtrdi |
|
| 28 |
27
|
3adant3 |
|
| 29 |
|
simp3 |
|
| 30 |
12
|
3ad2ant1 |
|
| 31 |
1 24 3 5 25 28 29 30
|
stoweidlem28 |
|
| 32 |
19 20 21 31
|
syl3anc |
|
| 33 |
|
simpr1 |
|
| 34 |
|
simpr2 |
|
| 35 |
|
simplrl |
|
| 36 |
|
simprr1 |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simprr2 |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr3 |
|
| 41 |
37 39 40
|
3jca |
|
| 42 |
35 41
|
jca |
|
| 43 |
33 34 42
|
3jca |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
eximdv |
|
| 46 |
32 45
|
mpd |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
eximdv |
|
| 49 |
18 48
|
mpd |
|
| 50 |
|
nfv |
|
| 51 |
|
nfv |
|
| 52 |
|
nfra1 |
|
| 53 |
|
nfv |
|
| 54 |
|
nfra1 |
|
| 55 |
52 53 54
|
nf3an |
|
| 56 |
22 55
|
nfan |
|
| 57 |
50 51 56
|
nf3an |
|
| 58 |
2 57
|
nfan |
|
| 59 |
|
nfcv |
|
| 60 |
|
eqid |
|
| 61 |
7
|
adantr |
|
| 62 |
8
|
3adant1r |
|
| 63 |
9
|
3adant1r |
|
| 64 |
10
|
adantlr |
|
| 65 |
|
simpr1 |
|
| 66 |
|
simpr2 |
|
| 67 |
12
|
adantr |
|
| 68 |
13
|
adantr |
|
| 69 |
|
simpr3l |
|
| 70 |
|
simp3r1 |
|
| 71 |
70
|
adantl |
|
| 72 |
|
simp3r2 |
|
| 73 |
72
|
adantl |
|
| 74 |
|
simp3r3 |
|
| 75 |
74
|
adantl |
|
| 76 |
1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75
|
stoweidlem52 |
|
| 77 |
76
|
ex |
|
| 78 |
77
|
exlimdvv |
|
| 79 |
49 78
|
mpd |
|