Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem56.1 |
|
2 |
|
stoweidlem56.2 |
|
3 |
|
stoweidlem56.3 |
|
4 |
|
stoweidlem56.4 |
|
5 |
|
stoweidlem56.5 |
|
6 |
|
stoweidlem56.6 |
|
7 |
|
stoweidlem56.7 |
|
8 |
|
stoweidlem56.8 |
|
9 |
|
stoweidlem56.9 |
|
10 |
|
stoweidlem56.10 |
|
11 |
|
stoweidlem56.11 |
|
12 |
|
stoweidlem56.12 |
|
13 |
|
stoweidlem56.13 |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
stoweidlem55 |
|
17 |
|
df-rex |
|
18 |
16 17
|
sylib |
|
19 |
|
simpl |
|
20 |
|
simprl |
|
21 |
|
simprr3 |
|
22 |
|
nfv |
|
23 |
|
nfra1 |
|
24 |
2 22 23
|
nf3an |
|
25 |
4
|
3ad2ant1 |
|
26 |
7
|
sselda |
|
27 |
26 6
|
eleqtrdi |
|
28 |
27
|
3adant3 |
|
29 |
|
simp3 |
|
30 |
12
|
3ad2ant1 |
|
31 |
1 24 3 5 25 28 29 30
|
stoweidlem28 |
|
32 |
19 20 21 31
|
syl3anc |
|
33 |
|
simpr1 |
|
34 |
|
simpr2 |
|
35 |
|
simplrl |
|
36 |
|
simprr1 |
|
37 |
36
|
adantr |
|
38 |
|
simprr2 |
|
39 |
38
|
adantr |
|
40 |
|
simpr3 |
|
41 |
37 39 40
|
3jca |
|
42 |
35 41
|
jca |
|
43 |
33 34 42
|
3jca |
|
44 |
43
|
ex |
|
45 |
44
|
eximdv |
|
46 |
32 45
|
mpd |
|
47 |
46
|
ex |
|
48 |
47
|
eximdv |
|
49 |
18 48
|
mpd |
|
50 |
|
nfv |
|
51 |
|
nfv |
|
52 |
|
nfra1 |
|
53 |
|
nfv |
|
54 |
|
nfra1 |
|
55 |
52 53 54
|
nf3an |
|
56 |
22 55
|
nfan |
|
57 |
50 51 56
|
nf3an |
|
58 |
2 57
|
nfan |
|
59 |
|
nfcv |
|
60 |
|
eqid |
|
61 |
7
|
adantr |
|
62 |
8
|
3adant1r |
|
63 |
9
|
3adant1r |
|
64 |
10
|
adantlr |
|
65 |
|
simpr1 |
|
66 |
|
simpr2 |
|
67 |
12
|
adantr |
|
68 |
13
|
adantr |
|
69 |
|
simpr3l |
|
70 |
|
simp3r1 |
|
71 |
70
|
adantl |
|
72 |
|
simp3r2 |
|
73 |
72
|
adantl |
|
74 |
|
simp3r3 |
|
75 |
74
|
adantl |
|
76 |
1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75
|
stoweidlem52 |
|
77 |
76
|
ex |
|
78 |
77
|
exlimdvv |
|
79 |
49 78
|
mpd |
|