Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem57.1 |
|
2 |
|
stoweidlem57.2 |
|
3 |
|
stoweidlem57.3 |
|
4 |
|
stoweidlem57.4 |
|
5 |
|
stoweidlem57.5 |
|
6 |
|
stoweidlem57.6 |
|
7 |
|
stoweidlem57.7 |
|
8 |
|
stoweidlem57.8 |
|
9 |
|
stoweidlem57.9 |
|
10 |
|
stoweidlem57.10 |
|
11 |
|
stoweidlem57.11 |
|
12 |
|
stoweidlem57.12 |
|
13 |
|
stoweidlem57.13 |
|
14 |
|
stoweidlem57.14 |
|
15 |
|
stoweidlem57.15 |
|
16 |
|
stoweidlem57.16 |
|
17 |
|
stoweidlem57.17 |
|
18 |
|
stoweidlem57.18 |
|
19 |
|
stoweidlem57.19 |
|
20 |
|
stoweidlem57.20 |
|
21 |
|
stoweidlem57.21 |
|
22 |
1
|
nfcri |
|
23 |
3 22
|
nfan |
|
24 |
10
|
adantr |
|
25 |
11
|
adantr |
|
26 |
12
|
3adant1r |
|
27 |
13
|
3adant1r |
|
28 |
14
|
adantlr |
|
29 |
15
|
adantlr |
|
30 |
|
cmptop |
|
31 |
7
|
iscld |
|
32 |
10 30 31
|
3syl |
|
33 |
16 32
|
mpbid |
|
34 |
33
|
simprd |
|
35 |
9 34
|
eqeltrid |
|
36 |
35
|
adantr |
|
37 |
7
|
cldss |
|
38 |
17 37
|
syl |
|
39 |
38
|
sselda |
|
40 |
|
disjr |
|
41 |
18 40
|
sylib |
|
42 |
41
|
r19.21bi |
|
43 |
39 42
|
eldifd |
|
44 |
43 9
|
eleqtrrdi |
|
45 |
2 23 6 24 7 8 25 26 27 28 29 36 44
|
stoweidlem56 |
|
46 |
|
simpl |
|
47 |
|
simprll |
|
48 |
|
simprr |
|
49 |
5
|
rabeq2i |
|
50 |
46 48 49
|
sylanbrc |
|
51 |
46 47 50
|
jca32 |
|
52 |
51
|
reximi2 |
|
53 |
|
rexex |
|
54 |
45 52 53
|
3syl |
|
55 |
|
nfcv |
|
56 |
|
nfrab1 |
|
57 |
5 56
|
nfcxfr |
|
58 |
55 57
|
elunif |
|
59 |
54 58
|
sylibr |
|
60 |
59
|
ex |
|
61 |
60
|
ssrdv |
|
62 |
|
cmpcld |
|
63 |
10 17 62
|
syl2anc |
|
64 |
10 30
|
syl |
|
65 |
7
|
cmpsub |
|
66 |
64 38 65
|
syl2anc |
|
67 |
63 66
|
mpbid |
|
68 |
|
ssrab2 |
|
69 |
5 68
|
eqsstri |
|
70 |
5 10
|
rabexd |
|
71 |
|
elpwg |
|
72 |
70 71
|
syl |
|
73 |
69 72
|
mpbiri |
|
74 |
|
unieq |
|
75 |
74
|
sseq2d |
|
76 |
|
pweq |
|
77 |
76
|
ineq1d |
|
78 |
77
|
rexeqdv |
|
79 |
75 78
|
imbi12d |
|
80 |
79
|
rspccva |
|
81 |
67 73 80
|
syl2anc |
|
82 |
61 81
|
mpd |
|
83 |
|
elinel1 |
|
84 |
|
elpwi |
|
85 |
84
|
ssdifssd |
|
86 |
|
vex |
|
87 |
|
difexg |
|
88 |
86 87
|
ax-mp |
|
89 |
88
|
elpw |
|
90 |
85 89
|
sylibr |
|
91 |
83 90
|
syl |
|
92 |
|
elinel2 |
|
93 |
|
diffi |
|
94 |
92 93
|
syl |
|
95 |
91 94
|
elind |
|
96 |
95
|
3ad2ant2 |
|
97 |
|
unidif0 |
|
98 |
97
|
sseq2i |
|
99 |
98
|
biimpri |
|
100 |
99
|
3ad2ant3 |
|
101 |
|
eldifsni |
|
102 |
101
|
rgen |
|
103 |
102
|
a1i |
|
104 |
|
unieq |
|
105 |
104
|
sseq2d |
|
106 |
|
raleq |
|
107 |
105 106
|
anbi12d |
|
108 |
107
|
rspcev |
|
109 |
96 100 103 108
|
syl12anc |
|
110 |
109
|
rexlimdv3a |
|
111 |
82 110
|
mpd |
|
112 |
|
nfv |
|
113 |
|
nfcv |
|
114 |
|
nfre1 |
|
115 |
113 114
|
nfralw |
|
116 |
|
nfcv |
|
117 |
115 116
|
nfrabw |
|
118 |
5 117
|
nfcxfr |
|
119 |
118
|
nfpw |
|
120 |
|
nfcv |
|
121 |
119 120
|
nfin |
|
122 |
121
|
nfcri |
|
123 |
|
nfv |
|
124 |
112 122 123
|
nf3an |
|
125 |
|
nfcv |
|
126 |
|
nfcv |
|
127 |
|
nfra1 |
|
128 |
|
nfra1 |
|
129 |
|
nfra1 |
|
130 |
127 128 129
|
nf3an |
|
131 |
126 130
|
nfrex |
|
132 |
125 131
|
nfralw |
|
133 |
|
nfcv |
|
134 |
132 133
|
nfrabw |
|
135 |
5 134
|
nfcxfr |
|
136 |
135
|
nfpw |
|
137 |
|
nfcv |
|
138 |
136 137
|
nfin |
|
139 |
138
|
nfcri |
|
140 |
|
nfcv |
|
141 |
1 140
|
nfss |
|
142 |
|
nfv |
|
143 |
141 142
|
nfan |
|
144 |
3 139 143
|
nf3an |
|
145 |
|
nfv |
|
146 |
57
|
nfpw |
|
147 |
|
nfcv |
|
148 |
146 147
|
nfin |
|
149 |
148
|
nfcri |
|
150 |
|
nfv |
|
151 |
|
nfra1 |
|
152 |
150 151
|
nfan |
|
153 |
145 149 152
|
nf3an |
|
154 |
|
simp2 |
|
155 |
|
simp3l |
|
156 |
19
|
3ad2ant1 |
|
157 |
20
|
3ad2ant1 |
|
158 |
33
|
simpld |
|
159 |
158
|
3ad2ant1 |
|
160 |
70
|
3ad2ant1 |
|
161 |
|
retop |
|
162 |
6 161
|
eqeltri |
|
163 |
|
cnfex |
|
164 |
64 162 163
|
sylancl |
|
165 |
11 8
|
sseqtrdi |
|
166 |
164 165
|
ssexd |
|
167 |
166
|
3ad2ant1 |
|
168 |
124 144 153 9 4 5 154 155 156 157 159 160 167
|
stoweidlem39 |
|
169 |
168
|
rexlimdv3a |
|
170 |
111 169
|
mpd |
|
171 |
|
nfv |
|
172 |
|
nfv |
|
173 |
|
nfv |
|
174 |
|
nfv |
|
175 |
|
nfra1 |
|
176 |
174 175
|
nfan |
|
177 |
176
|
nfex |
|
178 |
172 173 177
|
nf3an |
|
179 |
171 178
|
nfan |
|
180 |
|
nfv |
|
181 |
3 180
|
nfan |
|
182 |
|
nfcv |
|
183 |
|
nfcv |
|
184 |
182 183 135
|
nff |
|
185 |
|
nfcv |
|
186 |
1 185
|
nfss |
|
187 |
|
nfcv |
|
188 |
127 126
|
nfrabw |
|
189 |
4 188
|
nfcxfr |
|
190 |
187 183 189
|
nff |
|
191 |
|
nfra1 |
|
192 |
|
nfra1 |
|
193 |
191 192
|
nfan |
|
194 |
183 193
|
nfralw |
|
195 |
190 194
|
nfan |
|
196 |
195
|
nfex |
|
197 |
184 186 196
|
nf3an |
|
198 |
181 197
|
nfan |
|
199 |
|
nfv |
|
200 |
|
nfv |
|
201 |
|
nfv |
|
202 |
|
nfe1 |
|
203 |
200 201 202
|
nf3an |
|
204 |
199 203
|
nfan |
|
205 |
|
nfv |
|
206 |
|
nfcv |
|
207 |
|
nfcv |
|
208 |
206 207 57
|
nff |
|
209 |
|
nfv |
|
210 |
|
nfv |
|
211 |
208 209 210
|
nf3an |
|
212 |
205 211
|
nfan |
|
213 |
|
eqid |
|
214 |
|
eqid |
|
215 |
|
eqid |
|
216 |
|
eqid |
|
217 |
|
simp1ll |
|
218 |
217 13
|
syld3an1 |
|
219 |
11
|
sselda |
|
220 |
6 7 8 219
|
fcnre |
|
221 |
220
|
ad4ant14 |
|
222 |
|
simplr |
|
223 |
|
simpr1 |
|
224 |
7
|
cldss |
|
225 |
16 224
|
syl |
|
226 |
225
|
ad2antrr |
|
227 |
|
simpr2 |
|
228 |
38
|
ad2antrr |
|
229 |
|
feq3 |
|
230 |
4 229
|
ax-mp |
|
231 |
230
|
biimpi |
|
232 |
231
|
anim1i |
|
233 |
232
|
eximi |
|
234 |
233
|
3ad2ant3 |
|
235 |
234
|
adantl |
|
236 |
10
|
uniexd |
|
237 |
7 236
|
eqeltrid |
|
238 |
237
|
ad2antrr |
|
239 |
20
|
ad2antrr |
|
240 |
21
|
ad2antrr |
|
241 |
179 198 204 212 7 213 214 215 216 5 218 221 222 223 226 227 228 235 238 239 240
|
stoweidlem54 |
|
242 |
241
|
ex |
|
243 |
242
|
exlimdv |
|
244 |
243
|
rexlimdva |
|
245 |
170 244
|
mpd |
|