Metamath Proof Explorer


Theorem stoweidlem59

Description: This lemma proves that there exists a function x as in the proof in BrosowskiDeutsh p. 91, after Lemma 2: x_j is in the subalgebra, 0 <= x_j <= 1, x_j < ε / n on A_j (meaning A in the paper), x_j > 1 - \epsilon / n on B_j. Here D is used to represent A in the paper (because A is used for the subalgebra of functions), E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem59.1 _ t F
stoweidlem59.2 t φ
stoweidlem59.3 K = topGen ran .
stoweidlem59.4 T = J
stoweidlem59.5 C = J Cn K
stoweidlem59.6 D = j 0 N t T | F t j 1 3 E
stoweidlem59.7 B = j 0 N t T | j + 1 3 E F t
stoweidlem59.8 Y = y A | t T 0 y t y t 1
stoweidlem59.9 H = j 0 N y Y | t D j y t < E N t B j 1 E N < y t
stoweidlem59.10 φ J Comp
stoweidlem59.11 φ A C
stoweidlem59.12 φ f A g A t T f t + g t A
stoweidlem59.13 φ f A g A t T f t g t A
stoweidlem59.14 φ y t T y A
stoweidlem59.15 φ r T t T r t q A q r q t
stoweidlem59.16 φ F C
stoweidlem59.17 φ E +
stoweidlem59.18 φ E < 1 3
stoweidlem59.19 φ N
Assertion stoweidlem59 φ x x : 0 N A j 0 N t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t

Proof

Step Hyp Ref Expression
1 stoweidlem59.1 _ t F
2 stoweidlem59.2 t φ
3 stoweidlem59.3 K = topGen ran .
4 stoweidlem59.4 T = J
5 stoweidlem59.5 C = J Cn K
6 stoweidlem59.6 D = j 0 N t T | F t j 1 3 E
7 stoweidlem59.7 B = j 0 N t T | j + 1 3 E F t
8 stoweidlem59.8 Y = y A | t T 0 y t y t 1
9 stoweidlem59.9 H = j 0 N y Y | t D j y t < E N t B j 1 E N < y t
10 stoweidlem59.10 φ J Comp
11 stoweidlem59.11 φ A C
12 stoweidlem59.12 φ f A g A t T f t + g t A
13 stoweidlem59.13 φ f A g A t T f t g t A
14 stoweidlem59.14 φ y t T y A
15 stoweidlem59.15 φ r T t T r t q A q r q t
16 stoweidlem59.16 φ F C
17 stoweidlem59.17 φ E +
18 stoweidlem59.18 φ E < 1 3
19 stoweidlem59.19 φ N
20 nfrab1 _ y y A | t T 0 y t y t 1
21 8 20 nfcxfr _ y Y
22 nfcv _ z Y
23 nfv z t D j y t < E N t B j 1 E N < y t
24 nfv y t D j z t < E N t B j 1 E N < z t
25 fveq1 y = z y t = z t
26 25 breq1d y = z y t < E N z t < E N
27 26 ralbidv y = z t D j y t < E N t D j z t < E N
28 25 breq2d y = z 1 E N < y t 1 E N < z t
29 28 ralbidv y = z t B j 1 E N < y t t B j 1 E N < z t
30 27 29 anbi12d y = z t D j y t < E N t B j 1 E N < y t t D j z t < E N t B j 1 E N < z t
31 21 22 23 24 30 cbvrabw y Y | t D j y t < E N t B j 1 E N < y t = z Y | t D j z t < E N t B j 1 E N < z t
32 ovexd φ J Cn K V
33 11 5 sseqtrdi φ A J Cn K
34 32 33 ssexd φ A V
35 8 34 rabexd φ Y V
36 31 35 rabexd φ y Y | t D j y t < E N t B j 1 E N < y t V
37 36 ralrimivw φ j 0 N y Y | t D j y t < E N t B j 1 E N < y t V
38 9 fnmpt j 0 N y Y | t D j y t < E N t B j 1 E N < y t V H Fn 0 N
39 37 38 syl φ H Fn 0 N
40 fzfi 0 N Fin
41 fnfi H Fn 0 N 0 N Fin H Fin
42 39 40 41 sylancl φ H Fin
43 rnfi H Fin ran H Fin
44 42 43 syl φ ran H Fin
45 fnchoice ran H Fin h h Fn ran H w ran H w h w w
46 44 45 syl φ h h Fn ran H w ran H w h w w
47 simprl φ h Fn ran H w ran H w h w w h Fn ran H
48 ovex 0 N V
49 48 mptex j 0 N y Y | t D j y t < E N t B j 1 E N < y t V
50 9 49 eqeltri H V
51 50 rnex ran H V
52 fnex h Fn ran H ran H V h V
53 47 51 52 sylancl φ h Fn ran H w ran H w h w w h V
54 coexg h V H V h H V
55 53 50 54 sylancl φ h Fn ran H w ran H w h w w h H V
56 dffn3 h Fn ran H h : ran H ran h
57 47 56 sylib φ h Fn ran H w ran H w h w w h : ran H ran h
58 nfv w φ
59 nfv w h Fn ran H
60 nfra1 w w ran H w h w w
61 59 60 nfan w h Fn ran H w ran H w h w w
62 58 61 nfan w φ h Fn ran H w ran H w h w w
63 simplrr φ h Fn ran H w ran H w h w w w ran H w ran H w h w w
64 simpr φ h Fn ran H w ran H w h w w w ran H w ran H
65 fvelrnb H Fn 0 N w ran H a 0 N H a = w
66 nfv a H j = w
67 nfmpt1 _ j j 0 N y Y | t D j y t < E N t B j 1 E N < y t
68 9 67 nfcxfr _ j H
69 nfcv _ j a
70 68 69 nffv _ j H a
71 nfcv _ j w
72 70 71 nfeq j H a = w
73 fveq2 j = a H j = H a
74 73 eqeq1d j = a H j = w H a = w
75 66 72 74 cbvrexw j 0 N H j = w a 0 N H a = w
76 65 75 bitr4di H Fn 0 N w ran H j 0 N H j = w
77 39 76 syl φ w ran H j 0 N H j = w
78 77 biimpa φ w ran H j 0 N H j = w
79 simp3 φ j 0 N H j = w H j = w
80 simpr φ j 0 N j 0 N
81 36 adantr φ j 0 N y Y | t D j y t < E N t B j 1 E N < y t V
82 9 fvmpt2 j 0 N y Y | t D j y t < E N t B j 1 E N < y t V H j = y Y | t D j y t < E N t B j 1 E N < y t
83 80 81 82 syl2anc φ j 0 N H j = y Y | t D j y t < E N t B j 1 E N < y t
84 nfcv _ t 0 N
85 nfrab1 _ t t T | F t j 1 3 E
86 84 85 nfmpt _ t j 0 N t T | F t j 1 3 E
87 6 86 nfcxfr _ t D
88 nfcv _ t j
89 87 88 nffv _ t D j
90 nfcv _ t T
91 nfrab1 _ t t T | j + 1 3 E F t
92 84 91 nfmpt _ t j 0 N t T | j + 1 3 E F t
93 7 92 nfcxfr _ t B
94 93 88 nffv _ t B j
95 90 94 nfdif _ t T B j
96 nfv t j 0 N
97 2 96 nfan t φ j 0 N
98 10 adantr φ j 0 N J Comp
99 11 adantr φ j 0 N A C
100 12 3adant1r φ j 0 N f A g A t T f t + g t A
101 13 3adant1r φ j 0 N f A g A t T f t g t A
102 14 adantlr φ j 0 N y t T y A
103 15 adantlr φ j 0 N r T t T r t q A q r q t
104 10 uniexd φ J V
105 4 104 eqeltrid φ T V
106 105 adantr φ j 0 N T V
107 rabexg T V t T | j + 1 3 E F t V
108 106 107 syl φ j 0 N t T | j + 1 3 E F t V
109 7 fvmpt2 j 0 N t T | j + 1 3 E F t V B j = t T | j + 1 3 E F t
110 80 108 109 syl2anc φ j 0 N B j = t T | j + 1 3 E F t
111 eqid t T | j + 1 3 E F t = t T | j + 1 3 E F t
112 elfzelz j 0 N j
113 112 zred j 0 N j
114 3re 3
115 3ne0 3 0
116 114 115 rereccli 1 3
117 readdcl j 1 3 j + 1 3
118 113 116 117 sylancl j 0 N j + 1 3
119 118 adantl φ j 0 N j + 1 3
120 17 rpred φ E
121 120 adantr φ j 0 N E
122 119 121 remulcld φ j 0 N j + 1 3 E
123 16 5 eleqtrdi φ F J Cn K
124 123 adantr φ j 0 N F J Cn K
125 1 3 4 111 122 124 rfcnpre3 φ j 0 N t T | j + 1 3 E F t Clsd J
126 110 125 eqeltrd φ j 0 N B j Clsd J
127 rabexg T V t T | F t j 1 3 E V
128 106 127 syl φ j 0 N t T | F t j 1 3 E V
129 6 fvmpt2 j 0 N t T | F t j 1 3 E V D j = t T | F t j 1 3 E
130 80 128 129 syl2anc φ j 0 N D j = t T | F t j 1 3 E
131 eqid t T | F t j 1 3 E = t T | F t j 1 3 E
132 resubcl j 1 3 j 1 3
133 113 116 132 sylancl j 0 N j 1 3
134 133 adantl φ j 0 N j 1 3
135 134 121 remulcld φ j 0 N j 1 3 E
136 1 3 4 131 135 124 rfcnpre4 φ j 0 N t T | F t j 1 3 E Clsd J
137 130 136 eqeltrd φ j 0 N D j Clsd J
138 135 adantr φ j 0 N t B j j 1 3 E
139 122 adantr φ j 0 N t B j j + 1 3 E
140 3 4 5 16 fcnre φ F : T
141 140 ad2antrr φ j 0 N t B j F : T
142 ssrab2 t T | j + 1 3 E F t T
143 110 142 eqsstrdi φ j 0 N B j T
144 143 sselda φ j 0 N t B j t T
145 141 144 ffvelrnd φ j 0 N t B j F t
146 116 132 mpan2 j j 1 3
147 id j j
148 116 117 mpan2 j j + 1 3
149 3pos 0 < 3
150 114 149 recgt0ii 0 < 1 3
151 116 150 elrpii 1 3 +
152 ltsubrp j 1 3 + j 1 3 < j
153 151 152 mpan2 j j 1 3 < j
154 ltaddrp j 1 3 + j < j + 1 3
155 151 154 mpan2 j j < j + 1 3
156 146 147 148 153 155 lttrd j j 1 3 < j + 1 3
157 113 156 syl j 0 N j 1 3 < j + 1 3
158 157 adantl φ j 0 N j 1 3 < j + 1 3
159 17 rpregt0d φ E 0 < E
160 159 adantr φ j 0 N E 0 < E
161 ltmul1 j 1 3 j + 1 3 E 0 < E j 1 3 < j + 1 3 j 1 3 E < j + 1 3 E
162 134 119 160 161 syl3anc φ j 0 N j 1 3 < j + 1 3 j 1 3 E < j + 1 3 E
163 158 162 mpbid φ j 0 N j 1 3 E < j + 1 3 E
164 163 adantr φ j 0 N t B j j 1 3 E < j + 1 3 E
165 110 eleq2d φ j 0 N t B j t t T | j + 1 3 E F t
166 165 biimpa φ j 0 N t B j t t T | j + 1 3 E F t
167 rabid t t T | j + 1 3 E F t t T j + 1 3 E F t
168 166 167 sylib φ j 0 N t B j t T j + 1 3 E F t
169 168 simprd φ j 0 N t B j j + 1 3 E F t
170 138 139 145 164 169 ltletrd φ j 0 N t B j j 1 3 E < F t
171 138 145 ltnled φ j 0 N t B j j 1 3 E < F t ¬ F t j 1 3 E
172 170 171 mpbid φ j 0 N t B j ¬ F t j 1 3 E
173 172 intnand φ j 0 N t B j ¬ t T F t j 1 3 E
174 rabid t t T | F t j 1 3 E t T F t j 1 3 E
175 173 174 sylnibr φ j 0 N t B j ¬ t t T | F t j 1 3 E
176 130 adantr φ j 0 N t B j D j = t T | F t j 1 3 E
177 175 176 neleqtrrd φ j 0 N t B j ¬ t D j
178 177 ex φ j 0 N t B j ¬ t D j
179 97 178 ralrimi φ j 0 N t B j ¬ t D j
180 disj B j D j = a B j ¬ a D j
181 nfcv _ a B j
182 89 nfcri t a D j
183 182 nfn t ¬ a D j
184 nfv a ¬ t D j
185 eleq1 a = t a D j t D j
186 185 notbid a = t ¬ a D j ¬ t D j
187 181 94 183 184 186 cbvralfw a B j ¬ a D j t B j ¬ t D j
188 180 187 bitri B j D j = t B j ¬ t D j
189 179 188 sylibr φ j 0 N B j D j =
190 eqid T B j = T B j
191 19 nnrpd φ N +
192 17 191 rpdivcld φ E N +
193 192 adantr φ j 0 N E N +
194 120 19 nndivred φ E N
195 116 a1i φ 1 3
196 19 nnge1d φ 1 N
197 1re 1
198 0lt1 0 < 1
199 197 198 pm3.2i 1 0 < 1
200 199 a1i φ 1 0 < 1
201 19 nnred φ N
202 19 nngt0d φ 0 < N
203 lediv2 1 0 < 1 N 0 < N E 0 < E 1 N E N E 1
204 200 201 202 159 203 syl121anc φ 1 N E N E 1
205 196 204 mpbid φ E N E 1
206 17 rpcnd φ E
207 206 div1d φ E 1 = E
208 205 207 breqtrd φ E N E
209 194 120 195 208 18 lelttrd φ E N < 1 3
210 209 adantr φ j 0 N E N < 1 3
211 89 95 97 3 4 5 98 99 100 101 102 103 126 137 189 190 193 210 stoweidlem58 φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t
212 df-rex x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t x x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t
213 211 212 sylib φ j 0 N x x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t
214 simprl φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t x A
215 simprr1 φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t t T 0 x t x t 1
216 fveq1 y = x y t = x t
217 216 breq2d y = x 0 y t 0 x t
218 216 breq1d y = x y t 1 x t 1
219 217 218 anbi12d y = x 0 y t y t 1 0 x t x t 1
220 219 ralbidv y = x t T 0 y t y t 1 t T 0 x t x t 1
221 220 8 elrab2 x Y x A t T 0 x t x t 1
222 214 215 221 sylanbrc φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t x Y
223 simprr2 φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t t D j x t < E N
224 simprr3 φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t t B j 1 E N < x t
225 223 224 jca φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t t D j x t < E N t B j 1 E N < x t
226 nfcv _ y x
227 nfv y t D j x t < E N t B j 1 E N < x t
228 216 breq1d y = x y t < E N x t < E N
229 228 ralbidv y = x t D j y t < E N t D j x t < E N
230 216 breq2d y = x 1 E N < y t 1 E N < x t
231 230 ralbidv y = x t B j 1 E N < y t t B j 1 E N < x t
232 229 231 anbi12d y = x t D j y t < E N t B j 1 E N < y t t D j x t < E N t B j 1 E N < x t
233 226 21 227 232 elrabf x y Y | t D j y t < E N t B j 1 E N < y t x Y t D j x t < E N t B j 1 E N < x t
234 222 225 233 sylanbrc φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t x y Y | t D j y t < E N t B j 1 E N < y t
235 234 ex φ j 0 N x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t x y Y | t D j y t < E N t B j 1 E N < y t
236 235 eximdv φ j 0 N x x A t T 0 x t x t 1 t D j x t < E N t B j 1 E N < x t x x y Y | t D j y t < E N t B j 1 E N < y t
237 213 236 mpd φ j 0 N x x y Y | t D j y t < E N t B j 1 E N < y t
238 ne0i x y Y | t D j y t < E N t B j 1 E N < y t y Y | t D j y t < E N t B j 1 E N < y t
239 238 exlimiv x x y Y | t D j y t < E N t B j 1 E N < y t y Y | t D j y t < E N t B j 1 E N < y t
240 237 239 syl φ j 0 N y Y | t D j y t < E N t B j 1 E N < y t
241 83 240 eqnetrd φ j 0 N H j
242 241 3adant3 φ j 0 N H j = w H j
243 79 242 eqnetrrd φ j 0 N H j = w w
244 243 3exp φ j 0 N H j = w w
245 244 rexlimdv φ j 0 N H j = w w
246 245 adantr φ w ran H j 0 N H j = w w
247 78 246 mpd φ w ran H w
248 247 adantlr φ h Fn ran H w ran H w h w w w ran H w
249 rsp w ran H w h w w w ran H w h w w
250 63 64 248 249 syl3c φ h Fn ran H w ran H w h w w w ran H h w w
251 250 ex φ h Fn ran H w ran H w h w w w ran H h w w
252 62 251 ralrimi φ h Fn ran H w ran H w h w w w ran H h w w
253 chfnrn h Fn ran H w ran H h w w ran h ran H
254 47 252 253 syl2anc φ h Fn ran H w ran H w h w w ran h ran H
255 nfv y φ
256 nfcv _ y h
257 nfcv _ y 0 N
258 nfrab1 _ y y Y | t D j y t < E N t B j 1 E N < y t
259 257 258 nfmpt _ y j 0 N y Y | t D j y t < E N t B j 1 E N < y t
260 9 259 nfcxfr _ y H
261 260 nfrn _ y ran H
262 256 261 nffn y h Fn ran H
263 nfv y w h w w
264 261 263 nfralw y w ran H w h w w
265 262 264 nfan y h Fn ran H w ran H w h w w
266 255 265 nfan y φ h Fn ran H w ran H w h w w
267 261 nfuni _ y ran H
268 fnunirn H Fn 0 N y ran H z 0 N y H z
269 nfcv _ j z
270 68 269 nffv _ j H z
271 270 nfcri j y H z
272 nfv z y H j
273 fveq2 z = j H z = H j
274 273 eleq2d z = j y H z y H j
275 271 272 274 cbvrexw z 0 N y H z j 0 N y H j
276 268 275 bitrdi H Fn 0 N y ran H j 0 N y H j
277 39 276 syl φ y ran H j 0 N y H j
278 277 biimpa φ y ran H j 0 N y H j
279 nfv j φ
280 68 nfrn _ j ran H
281 280 nfuni _ j ran H
282 281 nfcri j y ran H
283 279 282 nfan j φ y ran H
284 nfv j y Y
285 simp1l φ y ran H j 0 N y H j φ
286 simp2 φ y ran H j 0 N y H j j 0 N
287 simp3 φ y ran H j 0 N y H j y H j
288 83 eleq2d φ j 0 N y H j y y Y | t D j y t < E N t B j 1 E N < y t
289 288 biimpa φ j 0 N y H j y y Y | t D j y t < E N t B j 1 E N < y t
290 rabid y y Y | t D j y t < E N t B j 1 E N < y t y Y t D j y t < E N t B j 1 E N < y t
291 289 290 sylib φ j 0 N y H j y Y t D j y t < E N t B j 1 E N < y t
292 291 simpld φ j 0 N y H j y Y
293 285 286 287 292 syl21anc φ y ran H j 0 N y H j y Y
294 293 3exp φ y ran H j 0 N y H j y Y
295 283 284 294 rexlimd φ y ran H j 0 N y H j y Y
296 278 295 mpd φ y ran H y Y
297 296 adantlr φ h Fn ran H w ran H w h w w y ran H y Y
298 297 ex φ h Fn ran H w ran H w h w w y ran H y Y
299 266 267 21 298 ssrd φ h Fn ran H w ran H w h w w ran H Y
300 ssrab2 y A | t T 0 y t y t 1 A
301 8 300 eqsstri Y A
302 299 301 sstrdi φ h Fn ran H w ran H w h w w ran H A
303 254 302 sstrd φ h Fn ran H w ran H w h w w ran h A
304 57 303 fssd φ h Fn ran H w ran H w h w w h : ran H A
305 dffn3 H Fn 0 N H : 0 N ran H
306 39 305 sylib φ H : 0 N ran H
307 306 adantr φ h Fn ran H w ran H w h w w H : 0 N ran H
308 fco h : ran H A H : 0 N ran H h H : 0 N A
309 304 307 308 syl2anc φ h Fn ran H w ran H w h w w h H : 0 N A
310 nfcv _ j h
311 310 280 nffn j h Fn ran H
312 nfv j w h w w
313 280 312 nfralw j w ran H w h w w
314 311 313 nfan j h Fn ran H w ran H w h w w
315 279 314 nfan j φ h Fn ran H w ran H w h w w
316 simpll φ h Fn ran H w ran H w h w w j 0 N φ
317 simpr φ h Fn ran H w ran H w h w w j 0 N j 0 N
318 39 ad2antrr φ h Fn ran H w ran H w h w w j 0 N H Fn 0 N
319 fvco2 H Fn 0 N j 0 N h H j = h H j
320 318 319 sylancom φ h Fn ran H w ran H w h w w j 0 N h H j = h H j
321 simplrr φ h Fn ran H w ran H w h w w j 0 N w ran H w h w w
322 fnfun H Fn 0 N Fun H
323 39 322 syl φ Fun H
324 323 ad2antrr φ h Fn ran H w ran H w h w w j 0 N Fun H
325 39 fndmd φ dom H = 0 N
326 325 adantr φ j 0 N dom H = 0 N
327 80 326 eleqtrrd φ j 0 N j dom H
328 327 adantlr φ h Fn ran H w ran H w h w w j 0 N j dom H
329 fvelrn Fun H j dom H H j ran H
330 324 328 329 syl2anc φ h Fn ran H w ran H w h w w j 0 N H j ran H
331 321 330 jca φ h Fn ran H w ran H w h w w j 0 N w ran H w h w w H j ran H
332 241 adantlr φ h Fn ran H w ran H w h w w j 0 N H j
333 neeq1 w = H j w H j
334 fveq2 w = H j h w = h H j
335 id w = H j w = H j
336 334 335 eleq12d w = H j h w w h H j H j
337 333 336 imbi12d w = H j w h w w H j h H j H j
338 337 rspccva w ran H w h w w H j ran H H j h H j H j
339 331 332 338 sylc φ h Fn ran H w ran H w h w w j 0 N h H j H j
340 320 339 eqeltrd φ h Fn ran H w ran H w h w w j 0 N h H j H j
341 256 260 nfco _ y h H
342 nfcv _ y j
343 341 342 nffv _ y h H j
344 nfv y φ j 0 N
345 260 342 nffv _ y H j
346 343 345 nfel y h H j H j
347 344 346 nfan y φ j 0 N h H j H j
348 343 21 nfel y h H j Y
349 347 348 nfim y φ j 0 N h H j H j h H j Y
350 eleq1 y = h H j y H j h H j H j
351 350 anbi2d y = h H j φ j 0 N y H j φ j 0 N h H j H j
352 eleq1 y = h H j y Y h H j Y
353 351 352 imbi12d y = h H j φ j 0 N y H j y Y φ j 0 N h H j H j h H j Y
354 343 349 353 292 vtoclgf h H j H j φ j 0 N h H j H j h H j Y
355 354 anabsi7 φ j 0 N h H j H j h H j Y
356 316 317 340 355 syl21anc φ h Fn ran H w ran H w h w w j 0 N h H j Y
357 8 eleq2i h H j Y h H j y A | t T 0 y t y t 1
358 nfcv _ y A
359 nfcv _ y T
360 nfcv _ y 0
361 nfcv _ y
362 nfcv _ y t
363 343 362 nffv _ y h H j t
364 360 361 363 nfbr y 0 h H j t
365 nfcv _ y 1
366 363 361 365 nfbr y h H j t 1
367 364 366 nfan y 0 h H j t h H j t 1
368 359 367 nfralw y t T 0 h H j t h H j t 1
369 nfcv _ t y
370 nfcv _ t h
371 nfra1 t t D j y t < E N
372 nfra1 t t B j 1 E N < y t
373 371 372 nfan t t D j y t < E N t B j 1 E N < y t
374 nfra1 t t T 0 y t y t 1
375 nfcv _ t A
376 374 375 nfrabw _ t y A | t T 0 y t y t 1
377 8 376 nfcxfr _ t Y
378 373 377 nfrabw _ t y Y | t D j y t < E N t B j 1 E N < y t
379 84 378 nfmpt _ t j 0 N y Y | t D j y t < E N t B j 1 E N < y t
380 9 379 nfcxfr _ t H
381 370 380 nfco _ t h H
382 381 88 nffv _ t h H j
383 369 382 nfeq t y = h H j
384 fveq1 y = h H j y t = h H j t
385 384 breq2d y = h H j 0 y t 0 h H j t
386 384 breq1d y = h H j y t 1 h H j t 1
387 385 386 anbi12d y = h H j 0 y t y t 1 0 h H j t h H j t 1
388 383 387 ralbid y = h H j t T 0 y t y t 1 t T 0 h H j t h H j t 1
389 343 358 368 388 elrabf h H j y A | t T 0 y t y t 1 h H j A t T 0 h H j t h H j t 1
390 357 389 bitri h H j Y h H j A t T 0 h H j t h H j t 1
391 356 390 sylib φ h Fn ran H w ran H w h w w j 0 N h H j A t T 0 h H j t h H j t 1
392 391 simprd φ h Fn ran H w ran H w h w w j 0 N t T 0 h H j t h H j t 1
393 nfcv _ y D j
394 nfcv _ y <
395 nfcv _ y E N
396 363 394 395 nfbr y h H j t < E N
397 393 396 nfralw y t D j h H j t < E N
398 347 397 nfim y φ j 0 N h H j H j t D j h H j t < E N
399 384 breq1d y = h H j y t < E N h H j t < E N
400 383 399 ralbid y = h H j t D j y t < E N t D j h H j t < E N
401 351 400 imbi12d y = h H j φ j 0 N y H j t D j y t < E N φ j 0 N h H j H j t D j h H j t < E N
402 291 simprd φ j 0 N y H j t D j y t < E N t B j 1 E N < y t
403 402 simpld φ j 0 N y H j t D j y t < E N
404 343 398 401 403 vtoclgf h H j H j φ j 0 N h H j H j t D j h H j t < E N
405 404 anabsi7 φ j 0 N h H j H j t D j h H j t < E N
406 316 317 340 405 syl21anc φ h Fn ran H w ran H w h w w j 0 N t D j h H j t < E N
407 nfcv _ y B j
408 nfcv _ y 1 E N
409 408 394 363 nfbr y 1 E N < h H j t
410 407 409 nfralw y t B j 1 E N < h H j t
411 347 410 nfim y φ j 0 N h H j H j t B j 1 E N < h H j t
412 384 breq2d y = h H j 1 E N < y t 1 E N < h H j t
413 383 412 ralbid y = h H j t B j 1 E N < y t t B j 1 E N < h H j t
414 351 413 imbi12d y = h H j φ j 0 N y H j t B j 1 E N < y t φ j 0 N h H j H j t B j 1 E N < h H j t
415 402 simprd φ j 0 N y H j t B j 1 E N < y t
416 343 411 414 415 vtoclgf h H j H j φ j 0 N h H j H j t B j 1 E N < h H j t
417 416 anabsi7 φ j 0 N h H j H j t B j 1 E N < h H j t
418 316 317 340 417 syl21anc φ h Fn ran H w ran H w h w w j 0 N t B j 1 E N < h H j t
419 392 406 418 3jca φ h Fn ran H w ran H w h w w j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
420 419 ex φ h Fn ran H w ran H w h w w j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
421 315 420 ralrimi φ h Fn ran H w ran H w h w w j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
422 309 421 jca φ h Fn ran H w ran H w h w w h H : 0 N A j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
423 feq1 x = h H x : 0 N A h H : 0 N A
424 nfcv _ j x
425 310 68 nfco _ j h H
426 424 425 nfeq j x = h H
427 nfcv _ t x
428 427 381 nfeq t x = h H
429 fveq1 x = h H x j = h H j
430 429 fveq1d x = h H x j t = h H j t
431 430 breq2d x = h H 0 x j t 0 h H j t
432 430 breq1d x = h H x j t 1 h H j t 1
433 431 432 anbi12d x = h H 0 x j t x j t 1 0 h H j t h H j t 1
434 428 433 ralbid x = h H t T 0 x j t x j t 1 t T 0 h H j t h H j t 1
435 430 breq1d x = h H x j t < E N h H j t < E N
436 428 435 ralbid x = h H t D j x j t < E N t D j h H j t < E N
437 430 breq2d x = h H 1 E N < x j t 1 E N < h H j t
438 428 437 ralbid x = h H t B j 1 E N < x j t t B j 1 E N < h H j t
439 434 436 438 3anbi123d x = h H t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
440 426 439 ralbid x = h H j 0 N t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
441 423 440 anbi12d x = h H x : 0 N A j 0 N t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t h H : 0 N A j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t
442 441 spcegv h H V h H : 0 N A j 0 N t T 0 h H j t h H j t 1 t D j h H j t < E N t B j 1 E N < h H j t x x : 0 N A j 0 N t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t
443 55 422 442 sylc φ h Fn ran H w ran H w h w w x x : 0 N A j 0 N t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t
444 46 443 exlimddv φ x x : 0 N A j 0 N t T 0 x j t x j t 1 t D j x j t < E N t B j 1 E N < x j t