Metamath Proof Explorer


Theorem stoweidlem6

Description: Lemma for stoweid : two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem6.1 t f = F
stoweidlem6.2 t g = G
stoweidlem6.3 φ f A g A t T f t g t A
Assertion stoweidlem6 φ F A G A t T F t G t A

Proof

Step Hyp Ref Expression
1 stoweidlem6.1 t f = F
2 stoweidlem6.2 t g = G
3 stoweidlem6.3 φ f A g A t T f t g t A
4 simp3 φ F A G A G A
5 eleq1 g = G g A G A
6 5 3anbi3d g = G φ F A g A φ F A G A
7 fveq1 g = G g t = G t
8 7 oveq2d g = G F t g t = F t G t
9 8 adantr g = G t T F t g t = F t G t
10 2 9 mpteq2da g = G t T F t g t = t T F t G t
11 10 eleq1d g = G t T F t g t A t T F t G t A
12 6 11 imbi12d g = G φ F A g A t T F t g t A φ F A G A t T F t G t A
13 simp2 φ F A g A F A
14 eleq1 f = F f A F A
15 14 3anbi2d f = F φ f A g A φ F A g A
16 fveq1 f = F f t = F t
17 16 oveq1d f = F f t g t = F t g t
18 17 adantr f = F t T f t g t = F t g t
19 1 18 mpteq2da f = F t T f t g t = t T F t g t
20 19 eleq1d f = F t T f t g t A t T F t g t A
21 15 20 imbi12d f = F φ f A g A t T f t g t A φ F A g A t T F t g t A
22 21 3 vtoclg F A φ F A g A t T F t g t A
23 13 22 mpcom φ F A g A t T F t g t A
24 12 23 vtoclg G A φ F A G A t T F t G t A
25 4 24 mpcom φ F A G A t T F t G t A